File size: 17,749 Bytes
ea5c647 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
# some codes are copied from:
# https://github.com/huawei-noah/KD-NLP/blob/main/DyLoRA/
# Copyright (C) 2022. Huawei Technologies Co., Ltd. All rights reserved.
# Changes made to the original code:
# 2022.08.20 - Integrate the DyLoRA layer for the LoRA Linear layer
# ------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
# ------------------------------------------------------------------------------------------
import math
import os
import random
from typing import List, Tuple, Union
import torch
from torch import nn
class DyLoRAModule(torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
# NOTE: support dropout in future
def __init__(self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4, alpha=1, unit=1):
super().__init__()
self.lora_name = lora_name
self.lora_dim = lora_dim
self.unit = unit
assert self.lora_dim % self.unit == 0, "rank must be a multiple of unit"
if org_module.__class__.__name__ == "Conv2d":
in_dim = org_module.in_channels
out_dim = org_module.out_channels
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
if type(alpha) == torch.Tensor:
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
self.is_conv2d = org_module.__class__.__name__ == "Conv2d"
self.is_conv2d_3x3 = self.is_conv2d and org_module.kernel_size == (3, 3)
if self.is_conv2d and self.is_conv2d_3x3:
kernel_size = org_module.kernel_size
self.stride = org_module.stride
self.padding = org_module.padding
self.lora_A = nn.ParameterList([org_module.weight.new_zeros((1, in_dim, *kernel_size)) for _ in range(self.lora_dim)])
self.lora_B = nn.ParameterList([org_module.weight.new_zeros((out_dim, 1, 1, 1)) for _ in range(self.lora_dim)])
else:
self.lora_A = nn.ParameterList([org_module.weight.new_zeros((1, in_dim)) for _ in range(self.lora_dim)])
self.lora_B = nn.ParameterList([org_module.weight.new_zeros((out_dim, 1)) for _ in range(self.lora_dim)])
# same as microsoft's
for lora in self.lora_A:
torch.nn.init.kaiming_uniform_(lora, a=math.sqrt(5))
for lora in self.lora_B:
torch.nn.init.zeros_(lora)
self.multiplier = multiplier
self.org_module = org_module # remove in applying
def apply_to(self):
self.org_forward = self.org_module.forward
self.org_module.forward = self.forward
del self.org_module
def forward(self, x):
result = self.org_forward(x)
# specify the dynamic rank
trainable_rank = random.randint(0, self.lora_dim - 1)
trainable_rank = trainable_rank - trainable_rank % self.unit # make sure the rank is a multiple of unit
# 一部のパラメータを固定して、残りのパラメータを学習する
for i in range(0, trainable_rank):
self.lora_A[i].requires_grad = False
self.lora_B[i].requires_grad = False
for i in range(trainable_rank, trainable_rank + self.unit):
self.lora_A[i].requires_grad = True
self.lora_B[i].requires_grad = True
for i in range(trainable_rank + self.unit, self.lora_dim):
self.lora_A[i].requires_grad = False
self.lora_B[i].requires_grad = False
lora_A = torch.cat(tuple(self.lora_A), dim=0)
lora_B = torch.cat(tuple(self.lora_B), dim=1)
# calculate with lora_A and lora_B
if self.is_conv2d_3x3:
ab = torch.nn.functional.conv2d(x, lora_A, stride=self.stride, padding=self.padding)
ab = torch.nn.functional.conv2d(ab, lora_B)
else:
ab = x
if self.is_conv2d:
ab = ab.reshape(ab.size(0), ab.size(1), -1).transpose(1, 2) # (N, C, H, W) -> (N, H*W, C)
ab = torch.nn.functional.linear(ab, lora_A)
ab = torch.nn.functional.linear(ab, lora_B)
if self.is_conv2d:
ab = ab.transpose(1, 2).reshape(ab.size(0), -1, *x.size()[2:]) # (N, H*W, C) -> (N, C, H, W)
# 最後の項は、低rankをより大きくするためのスケーリング(じゃないかな)
result = result + ab * self.scale * math.sqrt(self.lora_dim / (trainable_rank + self.unit))
# NOTE weightに加算してからlinear/conv2dを呼んだほうが速いかも
return result
def state_dict(self, destination=None, prefix="", keep_vars=False):
# state dictを通常のLoRAと同じにする:
# nn.ParameterListは `.lora_A.0` みたいな名前になるので、forwardと同様にcatして入れ替える
sd = super().state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars)
lora_A_weight = torch.cat(tuple(self.lora_A), dim=0)
if self.is_conv2d and not self.is_conv2d_3x3:
lora_A_weight = lora_A_weight.unsqueeze(-1).unsqueeze(-1)
lora_B_weight = torch.cat(tuple(self.lora_B), dim=1)
if self.is_conv2d and not self.is_conv2d_3x3:
lora_B_weight = lora_B_weight.unsqueeze(-1).unsqueeze(-1)
sd[self.lora_name + ".lora_down.weight"] = lora_A_weight if keep_vars else lora_A_weight.detach()
sd[self.lora_name + ".lora_up.weight"] = lora_B_weight if keep_vars else lora_B_weight.detach()
i = 0
while True:
key_a = f"{self.lora_name}.lora_A.{i}"
key_b = f"{self.lora_name}.lora_B.{i}"
if key_a in sd:
sd.pop(key_a)
sd.pop(key_b)
else:
break
i += 1
return sd
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
# 通常のLoRAと同じstate dictを読み込めるようにする:この方法はchatGPTに聞いた
lora_A_weight = state_dict.pop(self.lora_name + ".lora_down.weight", None)
lora_B_weight = state_dict.pop(self.lora_name + ".lora_up.weight", None)
if lora_A_weight is None or lora_B_weight is None:
if strict:
raise KeyError(f"{self.lora_name}.lora_down/up.weight is not found")
else:
return
if self.is_conv2d and not self.is_conv2d_3x3:
lora_A_weight = lora_A_weight.squeeze(-1).squeeze(-1)
lora_B_weight = lora_B_weight.squeeze(-1).squeeze(-1)
state_dict.update(
{f"{self.lora_name}.lora_A.{i}": nn.Parameter(lora_A_weight[i].unsqueeze(0)) for i in range(lora_A_weight.size(0))}
)
state_dict.update(
{f"{self.lora_name}.lora_B.{i}": nn.Parameter(lora_B_weight[:, i].unsqueeze(1)) for i in range(lora_B_weight.size(1))}
)
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
def create_network(multiplier, network_dim, network_alpha, vae, text_encoder, unet, **kwargs):
if network_dim is None:
network_dim = 4 # default
if network_alpha is None:
network_alpha = 1.0
# extract dim/alpha for conv2d, and block dim
conv_dim = kwargs.get("conv_dim", None)
conv_alpha = kwargs.get("conv_alpha", None)
unit = kwargs.get("unit", None)
if conv_dim is not None:
conv_dim = int(conv_dim)
assert conv_dim == network_dim, "conv_dim must be same as network_dim"
if conv_alpha is None:
conv_alpha = 1.0
else:
conv_alpha = float(conv_alpha)
if unit is not None:
unit = int(unit)
else:
unit = 1
network = DyLoRANetwork(
text_encoder,
unet,
multiplier=multiplier,
lora_dim=network_dim,
alpha=network_alpha,
apply_to_conv=conv_dim is not None,
unit=unit,
varbose=True,
)
return network
# Create network from weights for inference, weights are not loaded here (because can be merged)
def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weights_sd=None, for_inference=False, **kwargs):
if weights_sd is None:
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
# get dim/alpha mapping
modules_dim = {}
modules_alpha = {}
for key, value in weights_sd.items():
if "." not in key:
continue
lora_name = key.split(".")[0]
if "alpha" in key:
modules_alpha[lora_name] = value
elif "lora_down" in key:
dim = value.size()[0]
modules_dim[lora_name] = dim
# print(lora_name, value.size(), dim)
# support old LoRA without alpha
for key in modules_dim.keys():
if key not in modules_alpha:
modules_alpha = modules_dim[key]
module_class = DyLoRAModule
network = DyLoRANetwork(
text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha, module_class=module_class
)
return network, weights_sd
class DyLoRANetwork(torch.nn.Module):
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"]
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
def __init__(
self,
text_encoder,
unet,
multiplier=1.0,
lora_dim=4,
alpha=1,
apply_to_conv=False,
modules_dim=None,
modules_alpha=None,
unit=1,
module_class=DyLoRAModule,
varbose=False,
) -> None:
super().__init__()
self.multiplier = multiplier
self.lora_dim = lora_dim
self.alpha = alpha
self.apply_to_conv = apply_to_conv
if modules_dim is not None:
print(f"create LoRA network from weights")
else:
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}, unit: {unit}")
if self.apply_to_conv:
print(f"apply LoRA to Conv2d with kernel size (3,3).")
# create module instances
def create_modules(is_unet, root_module: torch.nn.Module, target_replace_modules) -> List[DyLoRAModule]:
prefix = DyLoRANetwork.LORA_PREFIX_UNET if is_unet else DyLoRANetwork.LORA_PREFIX_TEXT_ENCODER
loras = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
is_linear = child_module.__class__.__name__ == "Linear"
is_conv2d = child_module.__class__.__name__ == "Conv2d"
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
if is_linear or is_conv2d:
lora_name = prefix + "." + name + "." + child_name
lora_name = lora_name.replace(".", "_")
dim = None
alpha = None
if modules_dim is not None:
if lora_name in modules_dim:
dim = modules_dim[lora_name]
alpha = modules_alpha[lora_name]
else:
if is_linear or is_conv2d_1x1 or apply_to_conv:
dim = self.lora_dim
alpha = self.alpha
if dim is None or dim == 0:
continue
# dropout and fan_in_fan_out is default
lora = module_class(lora_name, child_module, self.multiplier, dim, alpha, unit)
loras.append(lora)
return loras
self.text_encoder_loras = create_modules(False, text_encoder, DyLoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
# extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
target_modules = DyLoRANetwork.UNET_TARGET_REPLACE_MODULE
if modules_dim is not None or self.apply_to_conv:
target_modules += DyLoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
self.unet_loras = create_modules(True, unet, target_modules)
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for lora in self.text_encoder_loras + self.unet_loras:
lora.multiplier = self.multiplier
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
info = self.load_state_dict(weights_sd, False)
return info
def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True):
if apply_text_encoder:
print("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
"""
def merge_to(self, text_encoder, unet, weights_sd, dtype, device):
apply_text_encoder = apply_unet = False
for key in weights_sd.keys():
if key.startswith(DyLoRANetwork.LORA_PREFIX_TEXT_ENCODER):
apply_text_encoder = True
elif key.startswith(DyLoRANetwork.LORA_PREFIX_UNET):
apply_unet = True
if apply_text_encoder:
print("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
sd_for_lora = {}
for key in weights_sd.keys():
if key.startswith(lora.lora_name):
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key]
lora.merge_to(sd_for_lora, dtype, device)
print(f"weights are merged")
"""
def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr):
self.requires_grad_(True)
all_params = []
def enumerate_params(loras):
params = []
for lora in loras:
params.extend(lora.parameters())
return params
if self.text_encoder_loras:
param_data = {"params": enumerate_params(self.text_encoder_loras)}
if text_encoder_lr is not None:
param_data["lr"] = text_encoder_lr
all_params.append(param_data)
if self.unet_loras:
param_data = {"params": enumerate_params(self.unet_loras)}
if unet_lr is not None:
param_data["lr"] = unet_lr
all_params.append(param_data)
return all_params
def enable_gradient_checkpointing(self):
# not supported
pass
def prepare_grad_etc(self, text_encoder, unet):
self.requires_grad_(True)
def on_epoch_start(self, text_encoder, unet):
self.train()
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
from library import train_util
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
# mask is a tensor with values from 0 to 1
def set_region(self, sub_prompt_index, is_last_network, mask):
pass
def set_current_generation(self, batch_size, num_sub_prompts, width, height, shared):
pass
|