jayparmr's picture
Upload folder using huggingface_hub
ea5c647
raw
history blame
24.2 kB
# Modified from Diffusers to reduce VRAM usage
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
from diffusers.models.vae import DecoderOutput, DiagonalGaussianDistribution
from diffusers.models.autoencoder_kl import AutoencoderKLOutput
def slice_h(x, num_slices):
# slice with pad 1 both sides: to eliminate side effect of padding of conv2d
# Conv2dのpaddingの副作用を排除するために、両側にpad 1しながらHをスライスする
# NCHWでもNHWCでもどちらでも動く
size = (x.shape[2] + num_slices - 1) // num_slices
sliced = []
for i in range(num_slices):
if i == 0:
sliced.append(x[:, :, : size + 1, :])
else:
end = size * (i + 1) + 1
if x.shape[2] - end < 3: # if the last slice is too small, use the rest of the tensor 最後が細すぎるとconv2dできないので全部使う
end = x.shape[2]
sliced.append(x[:, :, size * i - 1 : end, :])
if end >= x.shape[2]:
break
return sliced
def cat_h(sliced):
# padding分を除いて結合する
cat = []
for i, x in enumerate(sliced):
if i == 0:
cat.append(x[:, :, :-1, :])
elif i == len(sliced) - 1:
cat.append(x[:, :, 1:, :])
else:
cat.append(x[:, :, 1:-1, :])
del x
x = torch.cat(cat, dim=2)
return x
def resblock_forward(_self, num_slices, input_tensor, temb, **kwargs):
assert _self.upsample is None and _self.downsample is None
assert _self.norm1.num_groups == _self.norm2.num_groups
assert temb is None
# make sure norms are on cpu
org_device = input_tensor.device
cpu_device = torch.device("cpu")
_self.norm1.to(cpu_device)
_self.norm2.to(cpu_device)
# GroupNormがCPUでfp16で動かない対策
org_dtype = input_tensor.dtype
if org_dtype == torch.float16:
_self.norm1.to(torch.float32)
_self.norm2.to(torch.float32)
# すべてのテンソルをCPUに移動する
input_tensor = input_tensor.to(cpu_device)
hidden_states = input_tensor
# どうもこれは結果が異なるようだ……
# def sliced_norm1(norm, x):
# num_div = 4 if up_block_idx <= 2 else x.shape[1] // norm.num_groups
# sliced_tensor = torch.chunk(x, num_div, dim=1)
# sliced_weight = torch.chunk(norm.weight, num_div, dim=0)
# sliced_bias = torch.chunk(norm.bias, num_div, dim=0)
# print(sliced_tensor[0].shape, num_div, sliced_weight[0].shape, sliced_bias[0].shape)
# normed_tensor = []
# for i in range(num_div):
# n = torch.group_norm(sliced_tensor[i], norm.num_groups, sliced_weight[i], sliced_bias[i], norm.eps)
# normed_tensor.append(n)
# del n
# x = torch.cat(normed_tensor, dim=1)
# return num_div, x
# normを分割すると結果が変わるので、ここだけは分割しない。GPUで計算するとVRAMが足りなくなるので、CPUで計算する。幸いCPUでもそこまで遅くない
if org_dtype == torch.float16:
hidden_states = hidden_states.to(torch.float32)
hidden_states = _self.norm1(hidden_states) # run on cpu
if org_dtype == torch.float16:
hidden_states = hidden_states.to(torch.float16)
sliced = slice_h(hidden_states, num_slices)
del hidden_states
for i in range(len(sliced)):
x = sliced[i]
sliced[i] = None
# 計算する部分だけGPUに移動する、以下同様
x = x.to(org_device)
x = _self.nonlinearity(x)
x = _self.conv1(x)
x = x.to(cpu_device)
sliced[i] = x
del x
hidden_states = cat_h(sliced)
del sliced
if org_dtype == torch.float16:
hidden_states = hidden_states.to(torch.float32)
hidden_states = _self.norm2(hidden_states) # run on cpu
if org_dtype == torch.float16:
hidden_states = hidden_states.to(torch.float16)
sliced = slice_h(hidden_states, num_slices)
del hidden_states
for i in range(len(sliced)):
x = sliced[i]
sliced[i] = None
x = x.to(org_device)
x = _self.nonlinearity(x)
x = _self.dropout(x)
x = _self.conv2(x)
x = x.to(cpu_device)
sliced[i] = x
del x
hidden_states = cat_h(sliced)
del sliced
# make shortcut
if _self.conv_shortcut is not None:
sliced = list(torch.chunk(input_tensor, num_slices, dim=2)) # no padding in conv_shortcut パディングがないので普通にスライスする
del input_tensor
for i in range(len(sliced)):
x = sliced[i]
sliced[i] = None
x = x.to(org_device)
x = _self.conv_shortcut(x)
x = x.to(cpu_device)
sliced[i] = x
del x
input_tensor = torch.cat(sliced, dim=2)
del sliced
output_tensor = (input_tensor + hidden_states) / _self.output_scale_factor
output_tensor = output_tensor.to(org_device) # 次のレイヤーがGPUで計算する
return output_tensor
class SlicingEncoder(nn.Module):
def __init__(
self,
in_channels=3,
out_channels=3,
down_block_types=("DownEncoderBlock2D",),
block_out_channels=(64,),
layers_per_block=2,
norm_num_groups=32,
act_fn="silu",
double_z=True,
num_slices=2,
):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)
self.mid_block = None
self.down_blocks = nn.ModuleList([])
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=self.layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
add_downsample=not is_final_block,
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=output_channel,
temb_channels=None,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidBlock2D(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default",
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=None,
)
self.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True) # とりあえずDiffusersのxformersを使う
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
conv_out_channels = 2 * out_channels if double_z else out_channels
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
# replace forward of ResBlocks
def wrapper(func, module, num_slices):
def forward(*args, **kwargs):
return func(module, num_slices, *args, **kwargs)
return forward
self.num_slices = num_slices
div = num_slices / (2 ** (len(self.down_blocks) - 1)) # 深い層はそこまで分割しなくていいので適宜減らす
# print(f"initial divisor: {div}")
if div >= 2:
div = int(div)
for resnet in self.mid_block.resnets:
resnet.forward = wrapper(resblock_forward, resnet, div)
# midblock doesn't have downsample
for i, down_block in enumerate(self.down_blocks[::-1]):
if div >= 2:
div = int(div)
# print(f"down block: {i} divisor: {div}")
for resnet in down_block.resnets:
resnet.forward = wrapper(resblock_forward, resnet, div)
if down_block.downsamplers is not None:
# print("has downsample")
for downsample in down_block.downsamplers:
downsample.forward = wrapper(self.downsample_forward, downsample, div * 2)
div *= 2
def forward(self, x):
sample = x
del x
org_device = sample.device
cpu_device = torch.device("cpu")
# sample = self.conv_in(sample)
sample = sample.to(cpu_device)
sliced = slice_h(sample, self.num_slices)
del sample
for i in range(len(sliced)):
x = sliced[i]
sliced[i] = None
x = x.to(org_device)
x = self.conv_in(x)
x = x.to(cpu_device)
sliced[i] = x
del x
sample = cat_h(sliced)
del sliced
sample = sample.to(org_device)
# down
for down_block in self.down_blocks:
sample = down_block(sample)
# middle
sample = self.mid_block(sample)
# post-process
# ここも省メモリ化したいが、恐らくそこまでメモリを食わないので省略
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
def downsample_forward(self, _self, num_slices, hidden_states):
assert hidden_states.shape[1] == _self.channels
assert _self.use_conv and _self.padding == 0
print("downsample forward", num_slices, hidden_states.shape)
org_device = hidden_states.device
cpu_device = torch.device("cpu")
hidden_states = hidden_states.to(cpu_device)
pad = (0, 1, 0, 1)
hidden_states = torch.nn.functional.pad(hidden_states, pad, mode="constant", value=0)
# slice with even number because of stride 2
# strideが2なので偶数でスライスする
# slice with pad 1 both sides: to eliminate side effect of padding of conv2d
size = (hidden_states.shape[2] + num_slices - 1) // num_slices
size = size + 1 if size % 2 == 1 else size
sliced = []
for i in range(num_slices):
if i == 0:
sliced.append(hidden_states[:, :, : size + 1, :])
else:
end = size * (i + 1) + 1
if hidden_states.shape[2] - end < 4: # if the last slice is too small, use the rest of the tensor
end = hidden_states.shape[2]
sliced.append(hidden_states[:, :, size * i - 1 : end, :])
if end >= hidden_states.shape[2]:
break
del hidden_states
for i in range(len(sliced)):
x = sliced[i]
sliced[i] = None
x = x.to(org_device)
x = _self.conv(x)
x = x.to(cpu_device)
# ここだけ雰囲気が違うのはCopilotのせい
if i == 0:
hidden_states = x
else:
hidden_states = torch.cat([hidden_states, x], dim=2)
hidden_states = hidden_states.to(org_device)
# print("downsample forward done", hidden_states.shape)
return hidden_states
class SlicingDecoder(nn.Module):
def __init__(
self,
in_channels=3,
out_channels=3,
up_block_types=("UpDecoderBlock2D",),
block_out_channels=(64,),
layers_per_block=2,
norm_num_groups=32,
act_fn="silu",
num_slices=2,
):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1)
self.mid_block = None
self.up_blocks = nn.ModuleList([])
# mid
self.mid_block = UNetMidBlock2D(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default",
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=None,
)
self.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True) # とりあえずDiffusersのxformersを使う
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
up_block = get_up_block(
up_block_type,
num_layers=self.layers_per_block + 1,
in_channels=prev_output_channel,
out_channels=output_channel,
prev_output_channel=None,
add_upsample=not is_final_block,
resnet_eps=1e-6,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=output_channel,
temb_channels=None,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
# replace forward of ResBlocks
def wrapper(func, module, num_slices):
def forward(*args, **kwargs):
return func(module, num_slices, *args, **kwargs)
return forward
self.num_slices = num_slices
div = num_slices / (2 ** (len(self.up_blocks) - 1))
print(f"initial divisor: {div}")
if div >= 2:
div = int(div)
for resnet in self.mid_block.resnets:
resnet.forward = wrapper(resblock_forward, resnet, div)
# midblock doesn't have upsample
for i, up_block in enumerate(self.up_blocks):
if div >= 2:
div = int(div)
# print(f"up block: {i} divisor: {div}")
for resnet in up_block.resnets:
resnet.forward = wrapper(resblock_forward, resnet, div)
if up_block.upsamplers is not None:
# print("has upsample")
for upsample in up_block.upsamplers:
upsample.forward = wrapper(self.upsample_forward, upsample, div * 2)
div *= 2
def forward(self, z):
sample = z
del z
sample = self.conv_in(sample)
# middle
sample = self.mid_block(sample)
# up
for i, up_block in enumerate(self.up_blocks):
sample = up_block(sample)
# post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
# conv_out with slicing because of VRAM usage
# conv_outはとてもVRAM使うのでスライスして対応
org_device = sample.device
cpu_device = torch.device("cpu")
sample = sample.to(cpu_device)
sliced = slice_h(sample, self.num_slices)
del sample
for i in range(len(sliced)):
x = sliced[i]
sliced[i] = None
x = x.to(org_device)
x = self.conv_out(x)
x = x.to(cpu_device)
sliced[i] = x
sample = cat_h(sliced)
del sliced
sample = sample.to(org_device)
return sample
def upsample_forward(self, _self, num_slices, hidden_states, output_size=None):
assert hidden_states.shape[1] == _self.channels
assert _self.use_conv_transpose == False and _self.use_conv
org_dtype = hidden_states.dtype
org_device = hidden_states.device
cpu_device = torch.device("cpu")
hidden_states = hidden_states.to(cpu_device)
sliced = slice_h(hidden_states, num_slices)
del hidden_states
for i in range(len(sliced)):
x = sliced[i]
sliced[i] = None
x = x.to(org_device)
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
# https://github.com/pytorch/pytorch/issues/86679
# PyTorch 2で直らないかね……
if org_dtype == torch.bfloat16:
x = x.to(torch.float32)
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
if org_dtype == torch.bfloat16:
x = x.to(org_dtype)
x = _self.conv(x)
# upsampleされてるのでpadは2になる
if i == 0:
x = x[:, :, :-2, :]
elif i == num_slices - 1:
x = x[:, :, 2:, :]
else:
x = x[:, :, 2:-2, :]
x = x.to(cpu_device)
sliced[i] = x
del x
hidden_states = torch.cat(sliced, dim=2)
# print("us hidden_states", hidden_states.shape)
del sliced
hidden_states = hidden_states.to(org_device)
return hidden_states
class SlicingAutoencoderKL(ModelMixin, ConfigMixin):
r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma
and Max Welling.
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
implements for all the model (such as downloading or saving, etc.)
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to :
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to :
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to :
obj:`(64,)`): Tuple of block output channels.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
latent_channels (`int`, *optional*, defaults to `4`): Number of channels in the latent space.
sample_size (`int`, *optional*, defaults to `32`): TODO
"""
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
block_out_channels: Tuple[int] = (64,),
layers_per_block: int = 1,
act_fn: str = "silu",
latent_channels: int = 4,
norm_num_groups: int = 32,
sample_size: int = 32,
num_slices: int = 16,
):
super().__init__()
# pass init params to Encoder
self.encoder = SlicingEncoder(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
double_z=True,
num_slices=num_slices,
)
# pass init params to Decoder
self.decoder = SlicingDecoder(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
num_slices=num_slices,
)
self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
self.use_slicing = False
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
z = self.post_quant_conv(z)
dec = self.decoder(z)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
# これはバッチ方向のスライシング 紛らわしい
def enable_slicing(self):
r"""
Enable sliced VAE decoding.
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously invoked, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def forward(
self,
sample: torch.FloatTensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[DecoderOutput, torch.FloatTensor]:
r"""
Args:
sample (`torch.FloatTensor`): Input sample.
sample_posterior (`bool`, *optional*, defaults to `False`):
Whether to sample from the posterior.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
"""
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)