File size: 24,232 Bytes
ea5c647 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
# Modified from Diffusers to reduce VRAM usage
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
from diffusers.models.vae import DecoderOutput, DiagonalGaussianDistribution
from diffusers.models.autoencoder_kl import AutoencoderKLOutput
def slice_h(x, num_slices):
# slice with pad 1 both sides: to eliminate side effect of padding of conv2d
# Conv2dのpaddingの副作用を排除するために、両側にpad 1しながらHをスライスする
# NCHWでもNHWCでもどちらでも動く
size = (x.shape[2] + num_slices - 1) // num_slices
sliced = []
for i in range(num_slices):
if i == 0:
sliced.append(x[:, :, : size + 1, :])
else:
end = size * (i + 1) + 1
if x.shape[2] - end < 3: # if the last slice is too small, use the rest of the tensor 最後が細すぎるとconv2dできないので全部使う
end = x.shape[2]
sliced.append(x[:, :, size * i - 1 : end, :])
if end >= x.shape[2]:
break
return sliced
def cat_h(sliced):
# padding分を除いて結合する
cat = []
for i, x in enumerate(sliced):
if i == 0:
cat.append(x[:, :, :-1, :])
elif i == len(sliced) - 1:
cat.append(x[:, :, 1:, :])
else:
cat.append(x[:, :, 1:-1, :])
del x
x = torch.cat(cat, dim=2)
return x
def resblock_forward(_self, num_slices, input_tensor, temb, **kwargs):
assert _self.upsample is None and _self.downsample is None
assert _self.norm1.num_groups == _self.norm2.num_groups
assert temb is None
# make sure norms are on cpu
org_device = input_tensor.device
cpu_device = torch.device("cpu")
_self.norm1.to(cpu_device)
_self.norm2.to(cpu_device)
# GroupNormがCPUでfp16で動かない対策
org_dtype = input_tensor.dtype
if org_dtype == torch.float16:
_self.norm1.to(torch.float32)
_self.norm2.to(torch.float32)
# すべてのテンソルをCPUに移動する
input_tensor = input_tensor.to(cpu_device)
hidden_states = input_tensor
# どうもこれは結果が異なるようだ……
# def sliced_norm1(norm, x):
# num_div = 4 if up_block_idx <= 2 else x.shape[1] // norm.num_groups
# sliced_tensor = torch.chunk(x, num_div, dim=1)
# sliced_weight = torch.chunk(norm.weight, num_div, dim=0)
# sliced_bias = torch.chunk(norm.bias, num_div, dim=0)
# print(sliced_tensor[0].shape, num_div, sliced_weight[0].shape, sliced_bias[0].shape)
# normed_tensor = []
# for i in range(num_div):
# n = torch.group_norm(sliced_tensor[i], norm.num_groups, sliced_weight[i], sliced_bias[i], norm.eps)
# normed_tensor.append(n)
# del n
# x = torch.cat(normed_tensor, dim=1)
# return num_div, x
# normを分割すると結果が変わるので、ここだけは分割しない。GPUで計算するとVRAMが足りなくなるので、CPUで計算する。幸いCPUでもそこまで遅くない
if org_dtype == torch.float16:
hidden_states = hidden_states.to(torch.float32)
hidden_states = _self.norm1(hidden_states) # run on cpu
if org_dtype == torch.float16:
hidden_states = hidden_states.to(torch.float16)
sliced = slice_h(hidden_states, num_slices)
del hidden_states
for i in range(len(sliced)):
x = sliced[i]
sliced[i] = None
# 計算する部分だけGPUに移動する、以下同様
x = x.to(org_device)
x = _self.nonlinearity(x)
x = _self.conv1(x)
x = x.to(cpu_device)
sliced[i] = x
del x
hidden_states = cat_h(sliced)
del sliced
if org_dtype == torch.float16:
hidden_states = hidden_states.to(torch.float32)
hidden_states = _self.norm2(hidden_states) # run on cpu
if org_dtype == torch.float16:
hidden_states = hidden_states.to(torch.float16)
sliced = slice_h(hidden_states, num_slices)
del hidden_states
for i in range(len(sliced)):
x = sliced[i]
sliced[i] = None
x = x.to(org_device)
x = _self.nonlinearity(x)
x = _self.dropout(x)
x = _self.conv2(x)
x = x.to(cpu_device)
sliced[i] = x
del x
hidden_states = cat_h(sliced)
del sliced
# make shortcut
if _self.conv_shortcut is not None:
sliced = list(torch.chunk(input_tensor, num_slices, dim=2)) # no padding in conv_shortcut パディングがないので普通にスライスする
del input_tensor
for i in range(len(sliced)):
x = sliced[i]
sliced[i] = None
x = x.to(org_device)
x = _self.conv_shortcut(x)
x = x.to(cpu_device)
sliced[i] = x
del x
input_tensor = torch.cat(sliced, dim=2)
del sliced
output_tensor = (input_tensor + hidden_states) / _self.output_scale_factor
output_tensor = output_tensor.to(org_device) # 次のレイヤーがGPUで計算する
return output_tensor
class SlicingEncoder(nn.Module):
def __init__(
self,
in_channels=3,
out_channels=3,
down_block_types=("DownEncoderBlock2D",),
block_out_channels=(64,),
layers_per_block=2,
norm_num_groups=32,
act_fn="silu",
double_z=True,
num_slices=2,
):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)
self.mid_block = None
self.down_blocks = nn.ModuleList([])
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=self.layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
add_downsample=not is_final_block,
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=output_channel,
temb_channels=None,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidBlock2D(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default",
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=None,
)
self.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True) # とりあえずDiffusersのxformersを使う
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
conv_out_channels = 2 * out_channels if double_z else out_channels
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
# replace forward of ResBlocks
def wrapper(func, module, num_slices):
def forward(*args, **kwargs):
return func(module, num_slices, *args, **kwargs)
return forward
self.num_slices = num_slices
div = num_slices / (2 ** (len(self.down_blocks) - 1)) # 深い層はそこまで分割しなくていいので適宜減らす
# print(f"initial divisor: {div}")
if div >= 2:
div = int(div)
for resnet in self.mid_block.resnets:
resnet.forward = wrapper(resblock_forward, resnet, div)
# midblock doesn't have downsample
for i, down_block in enumerate(self.down_blocks[::-1]):
if div >= 2:
div = int(div)
# print(f"down block: {i} divisor: {div}")
for resnet in down_block.resnets:
resnet.forward = wrapper(resblock_forward, resnet, div)
if down_block.downsamplers is not None:
# print("has downsample")
for downsample in down_block.downsamplers:
downsample.forward = wrapper(self.downsample_forward, downsample, div * 2)
div *= 2
def forward(self, x):
sample = x
del x
org_device = sample.device
cpu_device = torch.device("cpu")
# sample = self.conv_in(sample)
sample = sample.to(cpu_device)
sliced = slice_h(sample, self.num_slices)
del sample
for i in range(len(sliced)):
x = sliced[i]
sliced[i] = None
x = x.to(org_device)
x = self.conv_in(x)
x = x.to(cpu_device)
sliced[i] = x
del x
sample = cat_h(sliced)
del sliced
sample = sample.to(org_device)
# down
for down_block in self.down_blocks:
sample = down_block(sample)
# middle
sample = self.mid_block(sample)
# post-process
# ここも省メモリ化したいが、恐らくそこまでメモリを食わないので省略
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
def downsample_forward(self, _self, num_slices, hidden_states):
assert hidden_states.shape[1] == _self.channels
assert _self.use_conv and _self.padding == 0
print("downsample forward", num_slices, hidden_states.shape)
org_device = hidden_states.device
cpu_device = torch.device("cpu")
hidden_states = hidden_states.to(cpu_device)
pad = (0, 1, 0, 1)
hidden_states = torch.nn.functional.pad(hidden_states, pad, mode="constant", value=0)
# slice with even number because of stride 2
# strideが2なので偶数でスライスする
# slice with pad 1 both sides: to eliminate side effect of padding of conv2d
size = (hidden_states.shape[2] + num_slices - 1) // num_slices
size = size + 1 if size % 2 == 1 else size
sliced = []
for i in range(num_slices):
if i == 0:
sliced.append(hidden_states[:, :, : size + 1, :])
else:
end = size * (i + 1) + 1
if hidden_states.shape[2] - end < 4: # if the last slice is too small, use the rest of the tensor
end = hidden_states.shape[2]
sliced.append(hidden_states[:, :, size * i - 1 : end, :])
if end >= hidden_states.shape[2]:
break
del hidden_states
for i in range(len(sliced)):
x = sliced[i]
sliced[i] = None
x = x.to(org_device)
x = _self.conv(x)
x = x.to(cpu_device)
# ここだけ雰囲気が違うのはCopilotのせい
if i == 0:
hidden_states = x
else:
hidden_states = torch.cat([hidden_states, x], dim=2)
hidden_states = hidden_states.to(org_device)
# print("downsample forward done", hidden_states.shape)
return hidden_states
class SlicingDecoder(nn.Module):
def __init__(
self,
in_channels=3,
out_channels=3,
up_block_types=("UpDecoderBlock2D",),
block_out_channels=(64,),
layers_per_block=2,
norm_num_groups=32,
act_fn="silu",
num_slices=2,
):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1)
self.mid_block = None
self.up_blocks = nn.ModuleList([])
# mid
self.mid_block = UNetMidBlock2D(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default",
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=None,
)
self.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True) # とりあえずDiffusersのxformersを使う
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
up_block = get_up_block(
up_block_type,
num_layers=self.layers_per_block + 1,
in_channels=prev_output_channel,
out_channels=output_channel,
prev_output_channel=None,
add_upsample=not is_final_block,
resnet_eps=1e-6,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=output_channel,
temb_channels=None,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
# replace forward of ResBlocks
def wrapper(func, module, num_slices):
def forward(*args, **kwargs):
return func(module, num_slices, *args, **kwargs)
return forward
self.num_slices = num_slices
div = num_slices / (2 ** (len(self.up_blocks) - 1))
print(f"initial divisor: {div}")
if div >= 2:
div = int(div)
for resnet in self.mid_block.resnets:
resnet.forward = wrapper(resblock_forward, resnet, div)
# midblock doesn't have upsample
for i, up_block in enumerate(self.up_blocks):
if div >= 2:
div = int(div)
# print(f"up block: {i} divisor: {div}")
for resnet in up_block.resnets:
resnet.forward = wrapper(resblock_forward, resnet, div)
if up_block.upsamplers is not None:
# print("has upsample")
for upsample in up_block.upsamplers:
upsample.forward = wrapper(self.upsample_forward, upsample, div * 2)
div *= 2
def forward(self, z):
sample = z
del z
sample = self.conv_in(sample)
# middle
sample = self.mid_block(sample)
# up
for i, up_block in enumerate(self.up_blocks):
sample = up_block(sample)
# post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
# conv_out with slicing because of VRAM usage
# conv_outはとてもVRAM使うのでスライスして対応
org_device = sample.device
cpu_device = torch.device("cpu")
sample = sample.to(cpu_device)
sliced = slice_h(sample, self.num_slices)
del sample
for i in range(len(sliced)):
x = sliced[i]
sliced[i] = None
x = x.to(org_device)
x = self.conv_out(x)
x = x.to(cpu_device)
sliced[i] = x
sample = cat_h(sliced)
del sliced
sample = sample.to(org_device)
return sample
def upsample_forward(self, _self, num_slices, hidden_states, output_size=None):
assert hidden_states.shape[1] == _self.channels
assert _self.use_conv_transpose == False and _self.use_conv
org_dtype = hidden_states.dtype
org_device = hidden_states.device
cpu_device = torch.device("cpu")
hidden_states = hidden_states.to(cpu_device)
sliced = slice_h(hidden_states, num_slices)
del hidden_states
for i in range(len(sliced)):
x = sliced[i]
sliced[i] = None
x = x.to(org_device)
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
# https://github.com/pytorch/pytorch/issues/86679
# PyTorch 2で直らないかね……
if org_dtype == torch.bfloat16:
x = x.to(torch.float32)
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
if org_dtype == torch.bfloat16:
x = x.to(org_dtype)
x = _self.conv(x)
# upsampleされてるのでpadは2になる
if i == 0:
x = x[:, :, :-2, :]
elif i == num_slices - 1:
x = x[:, :, 2:, :]
else:
x = x[:, :, 2:-2, :]
x = x.to(cpu_device)
sliced[i] = x
del x
hidden_states = torch.cat(sliced, dim=2)
# print("us hidden_states", hidden_states.shape)
del sliced
hidden_states = hidden_states.to(org_device)
return hidden_states
class SlicingAutoencoderKL(ModelMixin, ConfigMixin):
r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma
and Max Welling.
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
implements for all the model (such as downloading or saving, etc.)
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to :
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to :
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to :
obj:`(64,)`): Tuple of block output channels.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
latent_channels (`int`, *optional*, defaults to `4`): Number of channels in the latent space.
sample_size (`int`, *optional*, defaults to `32`): TODO
"""
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
block_out_channels: Tuple[int] = (64,),
layers_per_block: int = 1,
act_fn: str = "silu",
latent_channels: int = 4,
norm_num_groups: int = 32,
sample_size: int = 32,
num_slices: int = 16,
):
super().__init__()
# pass init params to Encoder
self.encoder = SlicingEncoder(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
double_z=True,
num_slices=num_slices,
)
# pass init params to Decoder
self.decoder = SlicingDecoder(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
num_slices=num_slices,
)
self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
self.use_slicing = False
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
z = self.post_quant_conv(z)
dec = self.decoder(z)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
# これはバッチ方向のスライシング 紛らわしい
def enable_slicing(self):
r"""
Enable sliced VAE decoding.
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously invoked, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def forward(
self,
sample: torch.FloatTensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[DecoderOutput, torch.FloatTensor]:
r"""
Args:
sample (`torch.FloatTensor`): Input sample.
sample_posterior (`bool`, *optional*, defaults to `False`):
Whether to sample from the posterior.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
"""
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
|