File size: 24,232 Bytes
ea5c647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
# Modified from Diffusers to reduce VRAM usage

# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import numpy as np
import torch
import torch.nn as nn


from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
from diffusers.models.vae import DecoderOutput, DiagonalGaussianDistribution
from diffusers.models.autoencoder_kl import AutoencoderKLOutput


def slice_h(x, num_slices):
    # slice with pad 1 both sides: to eliminate side effect of padding of conv2d
    # Conv2dのpaddingの副作用を排除するために、両側にpad 1しながらHをスライスする
    # NCHWでもNHWCでもどちらでも動く
    size = (x.shape[2] + num_slices - 1) // num_slices
    sliced = []
    for i in range(num_slices):
        if i == 0:
            sliced.append(x[:, :, : size + 1, :])
        else:
            end = size * (i + 1) + 1
            if x.shape[2] - end < 3:  # if the last slice is too small, use the rest of the tensor 最後が細すぎるとconv2dできないので全部使う
                end = x.shape[2]
            sliced.append(x[:, :, size * i - 1 : end, :])
            if end >= x.shape[2]:
                break
    return sliced


def cat_h(sliced):
    # padding分を除いて結合する
    cat = []
    for i, x in enumerate(sliced):
        if i == 0:
            cat.append(x[:, :, :-1, :])
        elif i == len(sliced) - 1:
            cat.append(x[:, :, 1:, :])
        else:
            cat.append(x[:, :, 1:-1, :])
        del x
    x = torch.cat(cat, dim=2)
    return x


def resblock_forward(_self, num_slices, input_tensor, temb, **kwargs):
    assert _self.upsample is None and _self.downsample is None
    assert _self.norm1.num_groups == _self.norm2.num_groups
    assert temb is None

    # make sure norms are on cpu
    org_device = input_tensor.device
    cpu_device = torch.device("cpu")
    _self.norm1.to(cpu_device)
    _self.norm2.to(cpu_device)

    # GroupNormがCPUでfp16で動かない対策
    org_dtype = input_tensor.dtype
    if org_dtype == torch.float16:
        _self.norm1.to(torch.float32)
        _self.norm2.to(torch.float32)

    # すべてのテンソルをCPUに移動する
    input_tensor = input_tensor.to(cpu_device)
    hidden_states = input_tensor

    # どうもこれは結果が異なるようだ……
    # def sliced_norm1(norm, x):
    #     num_div = 4 if up_block_idx <= 2 else x.shape[1] // norm.num_groups
    #     sliced_tensor = torch.chunk(x, num_div, dim=1)
    #     sliced_weight = torch.chunk(norm.weight, num_div, dim=0)
    #     sliced_bias = torch.chunk(norm.bias, num_div, dim=0)
    #     print(sliced_tensor[0].shape, num_div, sliced_weight[0].shape, sliced_bias[0].shape)
    #     normed_tensor = []
    #     for i in range(num_div):
    #         n = torch.group_norm(sliced_tensor[i], norm.num_groups, sliced_weight[i], sliced_bias[i], norm.eps)
    #         normed_tensor.append(n)
    #         del n
    #     x = torch.cat(normed_tensor, dim=1)
    #     return num_div, x

    # normを分割すると結果が変わるので、ここだけは分割しない。GPUで計算するとVRAMが足りなくなるので、CPUで計算する。幸いCPUでもそこまで遅くない
    if org_dtype == torch.float16:
        hidden_states = hidden_states.to(torch.float32)
    hidden_states = _self.norm1(hidden_states)  # run on cpu
    if org_dtype == torch.float16:
        hidden_states = hidden_states.to(torch.float16)

    sliced = slice_h(hidden_states, num_slices)
    del hidden_states

    for i in range(len(sliced)):
        x = sliced[i]
        sliced[i] = None

        # 計算する部分だけGPUに移動する、以下同様
        x = x.to(org_device)
        x = _self.nonlinearity(x)
        x = _self.conv1(x)
        x = x.to(cpu_device)
        sliced[i] = x
        del x

    hidden_states = cat_h(sliced)
    del sliced

    if org_dtype == torch.float16:
        hidden_states = hidden_states.to(torch.float32)
    hidden_states = _self.norm2(hidden_states)  # run on cpu
    if org_dtype == torch.float16:
        hidden_states = hidden_states.to(torch.float16)

    sliced = slice_h(hidden_states, num_slices)
    del hidden_states

    for i in range(len(sliced)):
        x = sliced[i]
        sliced[i] = None

        x = x.to(org_device)
        x = _self.nonlinearity(x)
        x = _self.dropout(x)
        x = _self.conv2(x)
        x = x.to(cpu_device)
        sliced[i] = x
        del x

    hidden_states = cat_h(sliced)
    del sliced

    # make shortcut
    if _self.conv_shortcut is not None:
        sliced = list(torch.chunk(input_tensor, num_slices, dim=2))  # no padding in conv_shortcut パディングがないので普通にスライスする
        del input_tensor

        for i in range(len(sliced)):
            x = sliced[i]
            sliced[i] = None

            x = x.to(org_device)
            x = _self.conv_shortcut(x)
            x = x.to(cpu_device)
            sliced[i] = x
            del x

        input_tensor = torch.cat(sliced, dim=2)
        del sliced

    output_tensor = (input_tensor + hidden_states) / _self.output_scale_factor

    output_tensor = output_tensor.to(org_device)  # 次のレイヤーがGPUで計算する
    return output_tensor


class SlicingEncoder(nn.Module):
    def __init__(
        self,
        in_channels=3,
        out_channels=3,
        down_block_types=("DownEncoderBlock2D",),
        block_out_channels=(64,),
        layers_per_block=2,
        norm_num_groups=32,
        act_fn="silu",
        double_z=True,
        num_slices=2,
    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)

        self.mid_block = None
        self.down_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=self.layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=not is_final_block,
                resnet_eps=1e-6,
                downsample_padding=0,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attention_head_dim=output_channel,
                temb_channels=None,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=None,
        )
        self.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True)  # とりあえずDiffusersのxformersを使う

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels
        self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)

        # replace forward of ResBlocks
        def wrapper(func, module, num_slices):
            def forward(*args, **kwargs):
                return func(module, num_slices, *args, **kwargs)

            return forward

        self.num_slices = num_slices
        div = num_slices / (2 ** (len(self.down_blocks) - 1))  # 深い層はそこまで分割しなくていいので適宜減らす
        # print(f"initial divisor: {div}")
        if div >= 2:
            div = int(div)
            for resnet in self.mid_block.resnets:
                resnet.forward = wrapper(resblock_forward, resnet, div)
            # midblock doesn't have downsample

        for i, down_block in enumerate(self.down_blocks[::-1]):
            if div >= 2:
                div = int(div)
                # print(f"down block: {i} divisor: {div}")
                for resnet in down_block.resnets:
                    resnet.forward = wrapper(resblock_forward, resnet, div)
                if down_block.downsamplers is not None:
                    # print("has downsample")
                    for downsample in down_block.downsamplers:
                        downsample.forward = wrapper(self.downsample_forward, downsample, div * 2)
            div *= 2

    def forward(self, x):
        sample = x
        del x

        org_device = sample.device
        cpu_device = torch.device("cpu")

        # sample = self.conv_in(sample)
        sample = sample.to(cpu_device)
        sliced = slice_h(sample, self.num_slices)
        del sample

        for i in range(len(sliced)):
            x = sliced[i]
            sliced[i] = None

            x = x.to(org_device)
            x = self.conv_in(x)
            x = x.to(cpu_device)
            sliced[i] = x
            del x

        sample = cat_h(sliced)
        del sliced

        sample = sample.to(org_device)

        # down
        for down_block in self.down_blocks:
            sample = down_block(sample)

        # middle
        sample = self.mid_block(sample)

        # post-process
        # ここも省メモリ化したいが、恐らくそこまでメモリを食わないので省略
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample

    def downsample_forward(self, _self, num_slices, hidden_states):
        assert hidden_states.shape[1] == _self.channels
        assert _self.use_conv and _self.padding == 0
        print("downsample forward", num_slices, hidden_states.shape)

        org_device = hidden_states.device
        cpu_device = torch.device("cpu")

        hidden_states = hidden_states.to(cpu_device)
        pad = (0, 1, 0, 1)
        hidden_states = torch.nn.functional.pad(hidden_states, pad, mode="constant", value=0)

        # slice with even number because of stride 2
        # strideが2なので偶数でスライスする
        # slice with pad 1 both sides: to eliminate side effect of padding of conv2d
        size = (hidden_states.shape[2] + num_slices - 1) // num_slices
        size = size + 1 if size % 2 == 1 else size

        sliced = []
        for i in range(num_slices):
            if i == 0:
                sliced.append(hidden_states[:, :, : size + 1, :])
            else:
                end = size * (i + 1) + 1
                if hidden_states.shape[2] - end < 4:  # if the last slice is too small, use the rest of the tensor
                    end = hidden_states.shape[2]
                sliced.append(hidden_states[:, :, size * i - 1 : end, :])
                if end >= hidden_states.shape[2]:
                    break
        del hidden_states

        for i in range(len(sliced)):
            x = sliced[i]
            sliced[i] = None

            x = x.to(org_device)
            x = _self.conv(x)
            x = x.to(cpu_device)

            # ここだけ雰囲気が違うのはCopilotのせい
            if i == 0:
                hidden_states = x
            else:
                hidden_states = torch.cat([hidden_states, x], dim=2)

        hidden_states = hidden_states.to(org_device)
        # print("downsample forward done", hidden_states.shape)
        return hidden_states


class SlicingDecoder(nn.Module):
    def __init__(
        self,
        in_channels=3,
        out_channels=3,
        up_block_types=("UpDecoderBlock2D",),
        block_out_channels=(64,),
        layers_per_block=2,
        norm_num_groups=32,
        act_fn="silu",
        num_slices=2,
    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1)

        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=None,
        )
        self.mid_block.attentions[0].set_use_memory_efficient_attention_xformers(True)  # とりあえずDiffusersのxformersを使う

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attention_head_dim=output_channel,
                temb_channels=None,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)

        # replace forward of ResBlocks
        def wrapper(func, module, num_slices):
            def forward(*args, **kwargs):
                return func(module, num_slices, *args, **kwargs)

            return forward

        self.num_slices = num_slices
        div = num_slices / (2 ** (len(self.up_blocks) - 1))
        print(f"initial divisor: {div}")
        if div >= 2:
            div = int(div)
            for resnet in self.mid_block.resnets:
                resnet.forward = wrapper(resblock_forward, resnet, div)
            # midblock doesn't have upsample

        for i, up_block in enumerate(self.up_blocks):
            if div >= 2:
                div = int(div)
                # print(f"up block: {i} divisor: {div}")
                for resnet in up_block.resnets:
                    resnet.forward = wrapper(resblock_forward, resnet, div)
                if up_block.upsamplers is not None:
                    # print("has upsample")
                    for upsample in up_block.upsamplers:
                        upsample.forward = wrapper(self.upsample_forward, upsample, div * 2)
            div *= 2

    def forward(self, z):
        sample = z
        del z
        sample = self.conv_in(sample)

        # middle
        sample = self.mid_block(sample)

        # up
        for i, up_block in enumerate(self.up_blocks):
            sample = up_block(sample)

        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)

        # conv_out with slicing because of VRAM usage
        # conv_outはとてもVRAM使うのでスライスして対応
        org_device = sample.device
        cpu_device = torch.device("cpu")
        sample = sample.to(cpu_device)

        sliced = slice_h(sample, self.num_slices)
        del sample
        for i in range(len(sliced)):
            x = sliced[i]
            sliced[i] = None

            x = x.to(org_device)
            x = self.conv_out(x)
            x = x.to(cpu_device)
            sliced[i] = x
        sample = cat_h(sliced)
        del sliced

        sample = sample.to(org_device)
        return sample

    def upsample_forward(self, _self, num_slices, hidden_states, output_size=None):
        assert hidden_states.shape[1] == _self.channels
        assert _self.use_conv_transpose == False and _self.use_conv

        org_dtype = hidden_states.dtype
        org_device = hidden_states.device
        cpu_device = torch.device("cpu")

        hidden_states = hidden_states.to(cpu_device)
        sliced = slice_h(hidden_states, num_slices)
        del hidden_states

        for i in range(len(sliced)):
            x = sliced[i]
            sliced[i] = None

            x = x.to(org_device)

            # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
            # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
            # https://github.com/pytorch/pytorch/issues/86679
            # PyTorch 2で直らないかね……
            if org_dtype == torch.bfloat16:
                x = x.to(torch.float32)

            x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")

            if org_dtype == torch.bfloat16:
                x = x.to(org_dtype)

            x = _self.conv(x)

            # upsampleされてるのでpadは2になる
            if i == 0:
                x = x[:, :, :-2, :]
            elif i == num_slices - 1:
                x = x[:, :, 2:, :]
            else:
                x = x[:, :, 2:-2, :]

            x = x.to(cpu_device)
            sliced[i] = x
            del x

        hidden_states = torch.cat(sliced, dim=2)
        # print("us hidden_states", hidden_states.shape)
        del sliced

        hidden_states = hidden_states.to(org_device)
        return hidden_states


class SlicingAutoencoderKL(ModelMixin, ConfigMixin):
    r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma
    and Max Welling.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
    implements for all the model (such as downloading or saving, etc.)

    Parameters:
        in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (int,  *optional*, defaults to 3): Number of channels in the output.
        down_block_types (`Tuple[str]`, *optional*, defaults to :
            obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to :
            obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to :
            obj:`(64,)`): Tuple of block output channels.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        latent_channels (`int`, *optional*, defaults to `4`): Number of channels in the latent space.
        sample_size (`int`, *optional*, defaults to `32`): TODO
    """

    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
        up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int] = (64,),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 4,
        norm_num_groups: int = 32,
        sample_size: int = 32,
        num_slices: int = 16,
    ):
        super().__init__()

        # pass init params to Encoder
        self.encoder = SlicingEncoder(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
            double_z=True,
            num_slices=num_slices,
        )

        # pass init params to Decoder
        self.decoder = SlicingDecoder(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            norm_num_groups=norm_num_groups,
            act_fn=act_fn,
            num_slices=num_slices,
        )

        self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
        self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
        self.use_slicing = False

    def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
        h = self.encoder(x)
        moments = self.quant_conv(h)
        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

    def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
        z = self.post_quant_conv(z)
        dec = self.decoder(z)

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    # これはバッチ方向のスライシング 紛らわしい
    def enable_slicing(self):
        r"""
        Enable sliced VAE decoding.

        When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
        steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.use_slicing = True

    def disable_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_slicing` was previously invoked, this method will go back to computing
        decoding in one step.
        """
        self.use_slicing = False

    def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
        if self.use_slicing and z.shape[0] > 1:
            decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
            decoded = self._decode(z).sample

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

    def forward(
        self,
        sample: torch.FloatTensor,
        sample_posterior: bool = False,
        return_dict: bool = True,
        generator: Optional[torch.Generator] = None,
    ) -> Union[DecoderOutput, torch.FloatTensor]:
        r"""
        Args:
            sample (`torch.FloatTensor`): Input sample.
            sample_posterior (`bool`, *optional*, defaults to `False`):
                Whether to sample from the posterior.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
        """
        x = sample
        posterior = self.encode(x).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
        dec = self.decode(z).sample

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)