|
|
|
|
|
|
|
""" |
|
target: sgm.modules.diffusionmodules.openaimodel.UNetModel |
|
params: |
|
adm_in_channels: 2816 |
|
num_classes: sequential |
|
use_checkpoint: True |
|
in_channels: 4 |
|
out_channels: 4 |
|
model_channels: 320 |
|
attention_resolutions: [4, 2] |
|
num_res_blocks: 2 |
|
channel_mult: [1, 2, 4] |
|
num_head_channels: 64 |
|
use_spatial_transformer: True |
|
use_linear_in_transformer: True |
|
transformer_depth: [1, 2, 10] # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16 |
|
context_dim: 2048 |
|
spatial_transformer_attn_type: softmax-xformers |
|
legacy: False |
|
""" |
|
|
|
import math |
|
from types import SimpleNamespace |
|
from typing import Any, Optional |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from einops import rearrange |
|
|
|
|
|
IN_CHANNELS: int = 4 |
|
OUT_CHANNELS: int = 4 |
|
ADM_IN_CHANNELS: int = 2816 |
|
CONTEXT_DIM: int = 2048 |
|
MODEL_CHANNELS: int = 320 |
|
TIME_EMBED_DIM = 320 * 4 |
|
|
|
USE_REENTRANT = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EPSILON = 1e-6 |
|
|
|
|
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def default(val, d): |
|
return val if exists(val) else d |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FlashAttentionFunction(torch.autograd.Function): |
|
@staticmethod |
|
@torch.no_grad() |
|
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): |
|
"""Algorithm 2 in the paper""" |
|
|
|
device = q.device |
|
dtype = q.dtype |
|
max_neg_value = -torch.finfo(q.dtype).max |
|
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) |
|
|
|
o = torch.zeros_like(q) |
|
all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device) |
|
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device) |
|
|
|
scale = q.shape[-1] ** -0.5 |
|
|
|
if not exists(mask): |
|
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) |
|
else: |
|
mask = rearrange(mask, "b n -> b 1 1 n") |
|
mask = mask.split(q_bucket_size, dim=-1) |
|
|
|
row_splits = zip( |
|
q.split(q_bucket_size, dim=-2), |
|
o.split(q_bucket_size, dim=-2), |
|
mask, |
|
all_row_sums.split(q_bucket_size, dim=-2), |
|
all_row_maxes.split(q_bucket_size, dim=-2), |
|
) |
|
|
|
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): |
|
q_start_index = ind * q_bucket_size - qk_len_diff |
|
|
|
col_splits = zip( |
|
k.split(k_bucket_size, dim=-2), |
|
v.split(k_bucket_size, dim=-2), |
|
) |
|
|
|
for k_ind, (kc, vc) in enumerate(col_splits): |
|
k_start_index = k_ind * k_bucket_size |
|
|
|
attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale |
|
|
|
if exists(row_mask): |
|
attn_weights.masked_fill_(~row_mask, max_neg_value) |
|
|
|
if causal and q_start_index < (k_start_index + k_bucket_size - 1): |
|
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu( |
|
q_start_index - k_start_index + 1 |
|
) |
|
attn_weights.masked_fill_(causal_mask, max_neg_value) |
|
|
|
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) |
|
attn_weights -= block_row_maxes |
|
exp_weights = torch.exp(attn_weights) |
|
|
|
if exists(row_mask): |
|
exp_weights.masked_fill_(~row_mask, 0.0) |
|
|
|
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON) |
|
|
|
new_row_maxes = torch.maximum(block_row_maxes, row_maxes) |
|
|
|
exp_values = torch.einsum("... i j, ... j d -> ... i d", exp_weights, vc) |
|
|
|
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) |
|
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) |
|
|
|
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums |
|
|
|
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values) |
|
|
|
row_maxes.copy_(new_row_maxes) |
|
row_sums.copy_(new_row_sums) |
|
|
|
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) |
|
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes) |
|
|
|
return o |
|
|
|
@staticmethod |
|
@torch.no_grad() |
|
def backward(ctx, do): |
|
"""Algorithm 4 in the paper""" |
|
|
|
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args |
|
q, k, v, o, l, m = ctx.saved_tensors |
|
|
|
device = q.device |
|
|
|
max_neg_value = -torch.finfo(q.dtype).max |
|
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) |
|
|
|
dq = torch.zeros_like(q) |
|
dk = torch.zeros_like(k) |
|
dv = torch.zeros_like(v) |
|
|
|
row_splits = zip( |
|
q.split(q_bucket_size, dim=-2), |
|
o.split(q_bucket_size, dim=-2), |
|
do.split(q_bucket_size, dim=-2), |
|
mask, |
|
l.split(q_bucket_size, dim=-2), |
|
m.split(q_bucket_size, dim=-2), |
|
dq.split(q_bucket_size, dim=-2), |
|
) |
|
|
|
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits): |
|
q_start_index = ind * q_bucket_size - qk_len_diff |
|
|
|
col_splits = zip( |
|
k.split(k_bucket_size, dim=-2), |
|
v.split(k_bucket_size, dim=-2), |
|
dk.split(k_bucket_size, dim=-2), |
|
dv.split(k_bucket_size, dim=-2), |
|
) |
|
|
|
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): |
|
k_start_index = k_ind * k_bucket_size |
|
|
|
attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale |
|
|
|
if causal and q_start_index < (k_start_index + k_bucket_size - 1): |
|
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu( |
|
q_start_index - k_start_index + 1 |
|
) |
|
attn_weights.masked_fill_(causal_mask, max_neg_value) |
|
|
|
exp_attn_weights = torch.exp(attn_weights - mc) |
|
|
|
if exists(row_mask): |
|
exp_attn_weights.masked_fill_(~row_mask, 0.0) |
|
|
|
p = exp_attn_weights / lc |
|
|
|
dv_chunk = torch.einsum("... i j, ... i d -> ... j d", p, doc) |
|
dp = torch.einsum("... i d, ... j d -> ... i j", doc, vc) |
|
|
|
D = (doc * oc).sum(dim=-1, keepdims=True) |
|
ds = p * scale * (dp - D) |
|
|
|
dq_chunk = torch.einsum("... i j, ... j d -> ... i d", ds, kc) |
|
dk_chunk = torch.einsum("... i j, ... i d -> ... j d", ds, qc) |
|
|
|
dqc.add_(dq_chunk) |
|
dkc.add_(dk_chunk) |
|
dvc.add_(dv_chunk) |
|
|
|
return dq, dk, dv, None, None, None, None |
|
|
|
|
|
|
|
|
|
|
|
def get_parameter_dtype(parameter: torch.nn.Module): |
|
return next(parameter.parameters()).dtype |
|
|
|
|
|
def get_parameter_device(parameter: torch.nn.Module): |
|
return next(parameter.parameters()).device |
|
|
|
|
|
def get_timestep_embedding( |
|
timesteps: torch.Tensor, |
|
embedding_dim: int, |
|
downscale_freq_shift: float = 1, |
|
scale: float = 1, |
|
max_period: int = 10000, |
|
): |
|
""" |
|
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. |
|
|
|
:param timesteps: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the |
|
embeddings. :return: an [N x dim] Tensor of positional embeddings. |
|
""" |
|
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" |
|
|
|
half_dim = embedding_dim // 2 |
|
exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device) |
|
exponent = exponent / (half_dim - downscale_freq_shift) |
|
|
|
emb = torch.exp(exponent) |
|
emb = timesteps[:, None].float() * emb[None, :] |
|
|
|
|
|
emb = scale * emb |
|
|
|
|
|
emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=-1) |
|
|
|
|
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) |
|
return emb |
|
|
|
|
|
|
|
def resize_like(x, target, mode="bicubic", align_corners=False): |
|
org_dtype = x.dtype |
|
if org_dtype == torch.bfloat16: |
|
x = x.to(torch.float32) |
|
|
|
if x.shape[-2:] != target.shape[-2:]: |
|
if mode == "nearest": |
|
x = F.interpolate(x, size=target.shape[-2:], mode=mode) |
|
else: |
|
x = F.interpolate(x, size=target.shape[-2:], mode=mode, align_corners=align_corners) |
|
|
|
if org_dtype == torch.bfloat16: |
|
x = x.to(org_dtype) |
|
return x |
|
|
|
|
|
class GroupNorm32(nn.GroupNorm): |
|
def forward(self, x): |
|
if self.weight.dtype != torch.float32: |
|
return super().forward(x) |
|
return super().forward(x.float()).type(x.dtype) |
|
|
|
|
|
class ResnetBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
|
|
self.in_layers = nn.Sequential( |
|
GroupNorm32(32, in_channels), |
|
nn.SiLU(), |
|
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1), |
|
) |
|
|
|
self.emb_layers = nn.Sequential(nn.SiLU(), nn.Linear(TIME_EMBED_DIM, out_channels)) |
|
|
|
self.out_layers = nn.Sequential( |
|
GroupNorm32(32, out_channels), |
|
nn.SiLU(), |
|
nn.Identity(), |
|
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1), |
|
) |
|
|
|
if in_channels != out_channels: |
|
self.skip_connection = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) |
|
else: |
|
self.skip_connection = nn.Identity() |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward_body(self, x, emb): |
|
h = self.in_layers(x) |
|
emb_out = self.emb_layers(emb).type(h.dtype) |
|
h = h + emb_out[:, :, None, None] |
|
h = self.out_layers(h) |
|
x = self.skip_connection(x) |
|
return x + h |
|
|
|
def forward(self, x, emb): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
|
|
def create_custom_forward(func): |
|
def custom_forward(*inputs): |
|
return func(*inputs) |
|
|
|
return custom_forward |
|
|
|
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), x, emb, use_reentrant=USE_REENTRANT) |
|
else: |
|
x = self.forward_body(x, emb) |
|
|
|
return x |
|
|
|
|
|
class Downsample2D(nn.Module): |
|
def __init__(self, channels, out_channels): |
|
super().__init__() |
|
|
|
self.channels = channels |
|
self.out_channels = out_channels |
|
|
|
self.op = nn.Conv2d(self.channels, self.out_channels, 3, stride=2, padding=1) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward_body(self, hidden_states): |
|
assert hidden_states.shape[1] == self.channels |
|
hidden_states = self.op(hidden_states) |
|
|
|
return hidden_states |
|
|
|
def forward(self, hidden_states): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
|
|
def create_custom_forward(func): |
|
def custom_forward(*inputs): |
|
return func(*inputs) |
|
|
|
return custom_forward |
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.forward_body), hidden_states, use_reentrant=USE_REENTRANT |
|
) |
|
else: |
|
hidden_states = self.forward_body(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
def __init__( |
|
self, |
|
query_dim: int, |
|
cross_attention_dim: Optional[int] = None, |
|
heads: int = 8, |
|
dim_head: int = 64, |
|
upcast_attention: bool = False, |
|
): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim |
|
self.upcast_attention = upcast_attention |
|
|
|
self.scale = dim_head**-0.5 |
|
self.heads = heads |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=False) |
|
|
|
self.to_out = nn.ModuleList([]) |
|
self.to_out.append(nn.Linear(inner_dim, query_dim)) |
|
|
|
|
|
self.use_memory_efficient_attention_xformers = False |
|
self.use_memory_efficient_attention_mem_eff = False |
|
self.use_sdpa = False |
|
|
|
def set_use_memory_efficient_attention(self, xformers, mem_eff): |
|
self.use_memory_efficient_attention_xformers = xformers |
|
self.use_memory_efficient_attention_mem_eff = mem_eff |
|
|
|
def set_use_sdpa(self, sdpa): |
|
self.use_sdpa = sdpa |
|
|
|
def reshape_heads_to_batch_dim(self, tensor): |
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.heads |
|
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) |
|
return tensor |
|
|
|
def reshape_batch_dim_to_heads(self, tensor): |
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.heads |
|
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) |
|
return tensor |
|
|
|
def forward(self, hidden_states, context=None, mask=None): |
|
if self.use_memory_efficient_attention_xformers: |
|
return self.forward_memory_efficient_xformers(hidden_states, context, mask) |
|
if self.use_memory_efficient_attention_mem_eff: |
|
return self.forward_memory_efficient_mem_eff(hidden_states, context, mask) |
|
if self.use_sdpa: |
|
return self.forward_sdpa(hidden_states, context, mask) |
|
|
|
query = self.to_q(hidden_states) |
|
context = context if context is not None else hidden_states |
|
key = self.to_k(context) |
|
value = self.to_v(context) |
|
|
|
query = self.reshape_heads_to_batch_dim(query) |
|
key = self.reshape_heads_to_batch_dim(key) |
|
value = self.reshape_heads_to_batch_dim(value) |
|
|
|
hidden_states = self._attention(query, key, value) |
|
|
|
|
|
hidden_states = self.to_out[0](hidden_states) |
|
|
|
return hidden_states |
|
|
|
def _attention(self, query, key, value): |
|
if self.upcast_attention: |
|
query = query.float() |
|
key = key.float() |
|
|
|
attention_scores = torch.baddbmm( |
|
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), |
|
query, |
|
key.transpose(-1, -2), |
|
beta=0, |
|
alpha=self.scale, |
|
) |
|
attention_probs = attention_scores.softmax(dim=-1) |
|
|
|
|
|
attention_probs = attention_probs.to(value.dtype) |
|
|
|
|
|
hidden_states = torch.bmm(attention_probs, value) |
|
|
|
|
|
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) |
|
return hidden_states |
|
|
|
|
|
def forward_memory_efficient_xformers(self, x, context=None, mask=None): |
|
import xformers.ops |
|
|
|
h = self.heads |
|
q_in = self.to_q(x) |
|
context = context if context is not None else x |
|
context = context.to(x.dtype) |
|
k_in = self.to_k(context) |
|
v_in = self.to_v(context) |
|
|
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b n h d", h=h), (q_in, k_in, v_in)) |
|
del q_in, k_in, v_in |
|
|
|
q = q.contiguous() |
|
k = k.contiguous() |
|
v = v.contiguous() |
|
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) |
|
del q, k, v |
|
|
|
out = rearrange(out, "b n h d -> b n (h d)", h=h) |
|
|
|
out = self.to_out[0](out) |
|
return out |
|
|
|
def forward_memory_efficient_mem_eff(self, x, context=None, mask=None): |
|
flash_func = FlashAttentionFunction |
|
|
|
q_bucket_size = 512 |
|
k_bucket_size = 1024 |
|
|
|
h = self.heads |
|
q = self.to_q(x) |
|
context = context if context is not None else x |
|
context = context.to(x.dtype) |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
del context, x |
|
|
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v)) |
|
|
|
out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size) |
|
|
|
out = rearrange(out, "b h n d -> b n (h d)") |
|
|
|
out = self.to_out[0](out) |
|
return out |
|
|
|
def forward_sdpa(self, x, context=None, mask=None): |
|
h = self.heads |
|
q_in = self.to_q(x) |
|
context = context if context is not None else x |
|
context = context.to(x.dtype) |
|
k_in = self.to_k(context) |
|
v_in = self.to_v(context) |
|
|
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q_in, k_in, v_in)) |
|
del q_in, k_in, v_in |
|
|
|
out = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False) |
|
|
|
out = rearrange(out, "b h n d -> b n (h d)", h=h) |
|
|
|
out = self.to_out[0](out) |
|
return out |
|
|
|
|
|
|
|
class GEGLU(nn.Module): |
|
r""" |
|
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. |
|
|
|
Parameters: |
|
dim_in (`int`): The number of channels in the input. |
|
dim_out (`int`): The number of channels in the output. |
|
""" |
|
|
|
def __init__(self, dim_in: int, dim_out: int): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
|
|
def gelu(self, gate): |
|
if gate.device.type != "mps": |
|
return F.gelu(gate) |
|
|
|
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) |
|
return hidden_states * self.gelu(gate) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
): |
|
super().__init__() |
|
inner_dim = int(dim * 4) |
|
|
|
self.net = nn.ModuleList([]) |
|
|
|
self.net.append(GEGLU(dim, inner_dim)) |
|
|
|
self.net.append(nn.Identity()) |
|
|
|
self.net.append(nn.Linear(inner_dim, dim)) |
|
|
|
def forward(self, hidden_states): |
|
for module in self.net: |
|
hidden_states = module(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BasicTransformerBlock(nn.Module): |
|
def __init__( |
|
self, dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: int, upcast_attention: bool = False |
|
): |
|
super().__init__() |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.attn1 = CrossAttention( |
|
query_dim=dim, |
|
cross_attention_dim=None, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
upcast_attention=upcast_attention, |
|
) |
|
self.ff = FeedForward(dim) |
|
|
|
|
|
self.attn2 = CrossAttention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
upcast_attention=upcast_attention, |
|
) |
|
|
|
self.norm1 = nn.LayerNorm(dim) |
|
self.norm2 = nn.LayerNorm(dim) |
|
|
|
|
|
self.norm3 = nn.LayerNorm(dim) |
|
|
|
def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool): |
|
self.attn1.set_use_memory_efficient_attention(xformers, mem_eff) |
|
self.attn2.set_use_memory_efficient_attention(xformers, mem_eff) |
|
|
|
def set_use_sdpa(self, sdpa: bool): |
|
self.attn1.set_use_sdpa(sdpa) |
|
self.attn2.set_use_sdpa(sdpa) |
|
|
|
def forward_body(self, hidden_states, context=None, timestep=None): |
|
|
|
norm_hidden_states = self.norm1(hidden_states) |
|
|
|
hidden_states = self.attn1(norm_hidden_states) + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm2(hidden_states) |
|
hidden_states = self.attn2(norm_hidden_states, context=context) + hidden_states |
|
|
|
|
|
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states |
|
|
|
return hidden_states |
|
|
|
def forward(self, hidden_states, context=None, timestep=None): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
|
|
def create_custom_forward(func): |
|
def custom_forward(*inputs): |
|
return func(*inputs) |
|
|
|
return custom_forward |
|
|
|
output = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.forward_body), hidden_states, context, timestep, use_reentrant=USE_REENTRANT |
|
) |
|
else: |
|
output = self.forward_body(hidden_states, context, timestep) |
|
|
|
return output |
|
|
|
|
|
class Transformer2DModel(nn.Module): |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
cross_attention_dim: Optional[int] = None, |
|
use_linear_projection: bool = False, |
|
upcast_attention: bool = False, |
|
num_transformer_layers: int = 1, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
inner_dim = num_attention_heads * attention_head_dim |
|
self.use_linear_projection = use_linear_projection |
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) |
|
|
|
|
|
if use_linear_projection: |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
else: |
|
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) |
|
|
|
blocks = [] |
|
for _ in range(num_transformer_layers): |
|
blocks.append( |
|
BasicTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
cross_attention_dim=cross_attention_dim, |
|
upcast_attention=upcast_attention, |
|
) |
|
) |
|
|
|
self.transformer_blocks = nn.ModuleList(blocks) |
|
|
|
if use_linear_projection: |
|
self.proj_out = nn.Linear(in_channels, inner_dim) |
|
else: |
|
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def set_use_memory_efficient_attention(self, xformers, mem_eff): |
|
for transformer in self.transformer_blocks: |
|
transformer.set_use_memory_efficient_attention(xformers, mem_eff) |
|
|
|
def set_use_sdpa(self, sdpa): |
|
for transformer in self.transformer_blocks: |
|
transformer.set_use_sdpa(sdpa) |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None): |
|
|
|
batch, _, height, weight = hidden_states.shape |
|
residual = hidden_states |
|
|
|
hidden_states = self.norm(hidden_states) |
|
if not self.use_linear_projection: |
|
hidden_states = self.proj_in(hidden_states) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) |
|
else: |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) |
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
|
|
for block in self.transformer_blocks: |
|
hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep) |
|
|
|
|
|
if not self.use_linear_projection: |
|
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
hidden_states = self.proj_out(hidden_states) |
|
else: |
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
|
|
output = hidden_states + residual |
|
|
|
return output |
|
|
|
|
|
class Upsample2D(nn.Module): |
|
def __init__(self, channels, out_channels): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels |
|
self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward_body(self, hidden_states, output_size=None): |
|
assert hidden_states.shape[1] == self.channels |
|
|
|
|
|
|
|
|
|
dtype = hidden_states.dtype |
|
if dtype == torch.bfloat16: |
|
hidden_states = hidden_states.to(torch.float32) |
|
|
|
|
|
if hidden_states.shape[0] >= 64: |
|
hidden_states = hidden_states.contiguous() |
|
|
|
|
|
if output_size is None: |
|
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") |
|
else: |
|
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") |
|
|
|
|
|
if dtype == torch.bfloat16: |
|
hidden_states = hidden_states.to(dtype) |
|
|
|
hidden_states = self.conv(hidden_states) |
|
|
|
return hidden_states |
|
|
|
def forward(self, hidden_states, output_size=None): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
|
|
def create_custom_forward(func): |
|
def custom_forward(*inputs): |
|
return func(*inputs) |
|
|
|
return custom_forward |
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.forward_body), hidden_states, output_size, use_reentrant=USE_REENTRANT |
|
) |
|
else: |
|
hidden_states = self.forward_body(hidden_states, output_size) |
|
|
|
return hidden_states |
|
|
|
|
|
class SdxlUNet2DConditionModel(nn.Module): |
|
_supports_gradient_checkpointing = True |
|
|
|
def __init__( |
|
self, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
|
|
self.in_channels = IN_CHANNELS |
|
self.out_channels = OUT_CHANNELS |
|
self.model_channels = MODEL_CHANNELS |
|
self.time_embed_dim = TIME_EMBED_DIM |
|
self.adm_in_channels = ADM_IN_CHANNELS |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
|
|
self.time_embed = nn.Sequential( |
|
nn.Linear(self.model_channels, self.time_embed_dim), |
|
nn.SiLU(), |
|
nn.Linear(self.time_embed_dim, self.time_embed_dim), |
|
) |
|
|
|
|
|
self.label_emb = nn.Sequential( |
|
nn.Sequential( |
|
nn.Linear(self.adm_in_channels, self.time_embed_dim), |
|
nn.SiLU(), |
|
nn.Linear(self.time_embed_dim, self.time_embed_dim), |
|
) |
|
) |
|
|
|
|
|
self.input_blocks = nn.ModuleList( |
|
[ |
|
nn.Sequential( |
|
nn.Conv2d(self.in_channels, self.model_channels, kernel_size=3, padding=(1, 1)), |
|
) |
|
] |
|
) |
|
|
|
|
|
for i in range(2): |
|
layers = [ |
|
ResnetBlock2D( |
|
in_channels=1 * self.model_channels, |
|
out_channels=1 * self.model_channels, |
|
), |
|
] |
|
self.input_blocks.append(nn.ModuleList(layers)) |
|
|
|
self.input_blocks.append( |
|
nn.Sequential( |
|
Downsample2D( |
|
channels=1 * self.model_channels, |
|
out_channels=1 * self.model_channels, |
|
), |
|
) |
|
) |
|
|
|
|
|
for i in range(2): |
|
layers = [ |
|
ResnetBlock2D( |
|
in_channels=(1 if i == 0 else 2) * self.model_channels, |
|
out_channels=2 * self.model_channels, |
|
), |
|
Transformer2DModel( |
|
num_attention_heads=2 * self.model_channels // 64, |
|
attention_head_dim=64, |
|
in_channels=2 * self.model_channels, |
|
num_transformer_layers=2, |
|
use_linear_projection=True, |
|
cross_attention_dim=2048, |
|
), |
|
] |
|
self.input_blocks.append(nn.ModuleList(layers)) |
|
|
|
self.input_blocks.append( |
|
nn.Sequential( |
|
Downsample2D( |
|
channels=2 * self.model_channels, |
|
out_channels=2 * self.model_channels, |
|
), |
|
) |
|
) |
|
|
|
|
|
for i in range(2): |
|
layers = [ |
|
ResnetBlock2D( |
|
in_channels=(2 if i == 0 else 4) * self.model_channels, |
|
out_channels=4 * self.model_channels, |
|
), |
|
Transformer2DModel( |
|
num_attention_heads=4 * self.model_channels // 64, |
|
attention_head_dim=64, |
|
in_channels=4 * self.model_channels, |
|
num_transformer_layers=10, |
|
use_linear_projection=True, |
|
cross_attention_dim=2048, |
|
), |
|
] |
|
self.input_blocks.append(nn.ModuleList(layers)) |
|
|
|
|
|
self.middle_block = nn.ModuleList( |
|
[ |
|
ResnetBlock2D( |
|
in_channels=4 * self.model_channels, |
|
out_channels=4 * self.model_channels, |
|
), |
|
Transformer2DModel( |
|
num_attention_heads=4 * self.model_channels // 64, |
|
attention_head_dim=64, |
|
in_channels=4 * self.model_channels, |
|
num_transformer_layers=10, |
|
use_linear_projection=True, |
|
cross_attention_dim=2048, |
|
), |
|
ResnetBlock2D( |
|
in_channels=4 * self.model_channels, |
|
out_channels=4 * self.model_channels, |
|
), |
|
] |
|
) |
|
|
|
|
|
self.output_blocks = nn.ModuleList([]) |
|
|
|
|
|
for i in range(3): |
|
layers = [ |
|
ResnetBlock2D( |
|
in_channels=4 * self.model_channels + (4 if i <= 1 else 2) * self.model_channels, |
|
out_channels=4 * self.model_channels, |
|
), |
|
Transformer2DModel( |
|
num_attention_heads=4 * self.model_channels // 64, |
|
attention_head_dim=64, |
|
in_channels=4 * self.model_channels, |
|
num_transformer_layers=10, |
|
use_linear_projection=True, |
|
cross_attention_dim=2048, |
|
), |
|
] |
|
if i == 2: |
|
layers.append( |
|
Upsample2D( |
|
channels=4 * self.model_channels, |
|
out_channels=4 * self.model_channels, |
|
) |
|
) |
|
|
|
self.output_blocks.append(nn.ModuleList(layers)) |
|
|
|
|
|
for i in range(3): |
|
layers = [ |
|
ResnetBlock2D( |
|
in_channels=2 * self.model_channels + (4 if i == 0 else (2 if i == 1 else 1)) * self.model_channels, |
|
out_channels=2 * self.model_channels, |
|
), |
|
Transformer2DModel( |
|
num_attention_heads=2 * self.model_channels // 64, |
|
attention_head_dim=64, |
|
in_channels=2 * self.model_channels, |
|
num_transformer_layers=2, |
|
use_linear_projection=True, |
|
cross_attention_dim=2048, |
|
), |
|
] |
|
if i == 2: |
|
layers.append( |
|
Upsample2D( |
|
channels=2 * self.model_channels, |
|
out_channels=2 * self.model_channels, |
|
) |
|
) |
|
|
|
self.output_blocks.append(nn.ModuleList(layers)) |
|
|
|
|
|
for i in range(3): |
|
layers = [ |
|
ResnetBlock2D( |
|
in_channels=1 * self.model_channels + (2 if i == 0 else 1) * self.model_channels, |
|
out_channels=1 * self.model_channels, |
|
), |
|
] |
|
|
|
self.output_blocks.append(nn.ModuleList(layers)) |
|
|
|
|
|
self.out = nn.ModuleList( |
|
[GroupNorm32(32, self.model_channels), nn.SiLU(), nn.Conv2d(self.model_channels, self.out_channels, 3, padding=1)] |
|
) |
|
|
|
|
|
def prepare_config(self): |
|
self.config = SimpleNamespace() |
|
|
|
@property |
|
def dtype(self) -> torch.dtype: |
|
|
|
return get_parameter_dtype(self) |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
|
|
return get_parameter_device(self) |
|
|
|
def set_attention_slice(self, slice_size): |
|
raise NotImplementedError("Attention slicing is not supported for this model.") |
|
|
|
def is_gradient_checkpointing(self) -> bool: |
|
return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules()) |
|
|
|
def enable_gradient_checkpointing(self): |
|
self.gradient_checkpointing = True |
|
self.set_gradient_checkpointing(value=True) |
|
|
|
def disable_gradient_checkpointing(self): |
|
self.gradient_checkpointing = False |
|
self.set_gradient_checkpointing(value=False) |
|
|
|
def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool) -> None: |
|
blocks = self.input_blocks + [self.middle_block] + self.output_blocks |
|
for block in blocks: |
|
for module in block: |
|
if hasattr(module, "set_use_memory_efficient_attention"): |
|
|
|
module.set_use_memory_efficient_attention(xformers, mem_eff) |
|
|
|
def set_use_sdpa(self, sdpa: bool) -> None: |
|
blocks = self.input_blocks + [self.middle_block] + self.output_blocks |
|
for block in blocks: |
|
for module in block: |
|
if hasattr(module, "set_use_sdpa"): |
|
module.set_use_sdpa(sdpa) |
|
|
|
def set_gradient_checkpointing(self, value=False): |
|
blocks = self.input_blocks + [self.middle_block] + self.output_blocks |
|
for block in blocks: |
|
for module in block.modules(): |
|
if hasattr(module, "gradient_checkpointing"): |
|
|
|
module.gradient_checkpointing = value |
|
|
|
|
|
|
|
def forward(self, x, timesteps=None, context=None, y=None, **kwargs): |
|
|
|
timesteps = timesteps.expand(x.shape[0]) |
|
|
|
hs = [] |
|
t_emb = get_timestep_embedding(timesteps, self.model_channels) |
|
t_emb = t_emb.to(x.dtype) |
|
emb = self.time_embed(t_emb) |
|
|
|
assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}" |
|
assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}" |
|
|
|
emb = emb + self.label_emb(y) |
|
|
|
def call_module(module, h, emb, context): |
|
x = h |
|
for layer in module: |
|
|
|
if isinstance(layer, ResnetBlock2D): |
|
x = layer(x, emb) |
|
elif isinstance(layer, Transformer2DModel): |
|
x = layer(x, context) |
|
else: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
h = x |
|
|
|
for module in self.input_blocks: |
|
h = call_module(module, h, emb, context) |
|
hs.append(h) |
|
|
|
h = call_module(self.middle_block, h, emb, context) |
|
|
|
for module in self.output_blocks: |
|
h = torch.cat([h, hs.pop()], dim=1) |
|
h = call_module(module, h, emb, context) |
|
|
|
h = h.type(x.dtype) |
|
h = call_module(self.out, h, emb, context) |
|
|
|
return h |
|
|
|
|
|
class InferSdxlUNet2DConditionModel: |
|
def __init__(self, original_unet: SdxlUNet2DConditionModel, **kwargs): |
|
self.delegate = original_unet |
|
|
|
|
|
|
|
self.delegate.forward = self.forward |
|
|
|
|
|
self.ds_depth_1 = None |
|
self.ds_depth_2 = None |
|
self.ds_timesteps_1 = None |
|
self.ds_timesteps_2 = None |
|
self.ds_ratio = None |
|
|
|
|
|
def __getattr__(self, name): |
|
return getattr(self.delegate, name) |
|
|
|
def __call__(self, *args, **kwargs): |
|
return self.delegate(*args, **kwargs) |
|
|
|
def set_deep_shrink(self, ds_depth_1, ds_timesteps_1=650, ds_depth_2=None, ds_timesteps_2=None, ds_ratio=0.5): |
|
if ds_depth_1 is None: |
|
print("Deep Shrink is disabled.") |
|
self.ds_depth_1 = None |
|
self.ds_timesteps_1 = None |
|
self.ds_depth_2 = None |
|
self.ds_timesteps_2 = None |
|
self.ds_ratio = None |
|
else: |
|
print( |
|
f"Deep Shrink is enabled: [depth={ds_depth_1}/{ds_depth_2}, timesteps={ds_timesteps_1}/{ds_timesteps_2}, ratio={ds_ratio}]" |
|
) |
|
self.ds_depth_1 = ds_depth_1 |
|
self.ds_timesteps_1 = ds_timesteps_1 |
|
self.ds_depth_2 = ds_depth_2 if ds_depth_2 is not None else -1 |
|
self.ds_timesteps_2 = ds_timesteps_2 if ds_timesteps_2 is not None else 1000 |
|
self.ds_ratio = ds_ratio |
|
|
|
def forward(self, x, timesteps=None, context=None, y=None, **kwargs): |
|
r""" |
|
current implementation is a copy of `SdxlUNet2DConditionModel.forward()` with Deep Shrink. |
|
""" |
|
_self = self.delegate |
|
|
|
|
|
timesteps = timesteps.expand(x.shape[0]) |
|
|
|
hs = [] |
|
t_emb = get_timestep_embedding(timesteps, _self.model_channels) |
|
t_emb = t_emb.to(x.dtype) |
|
emb = _self.time_embed(t_emb) |
|
|
|
assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}" |
|
assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}" |
|
|
|
emb = emb + _self.label_emb(y) |
|
|
|
def call_module(module, h, emb, context): |
|
x = h |
|
for layer in module: |
|
|
|
if isinstance(layer, ResnetBlock2D): |
|
x = layer(x, emb) |
|
elif isinstance(layer, Transformer2DModel): |
|
x = layer(x, context) |
|
else: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
h = x |
|
|
|
for depth, module in enumerate(_self.input_blocks): |
|
|
|
if self.ds_depth_1 is not None: |
|
if (depth == self.ds_depth_1 and timesteps[0] >= self.ds_timesteps_1) or ( |
|
self.ds_depth_2 is not None |
|
and depth == self.ds_depth_2 |
|
and timesteps[0] < self.ds_timesteps_1 |
|
and timesteps[0] >= self.ds_timesteps_2 |
|
): |
|
|
|
org_dtype = h.dtype |
|
if org_dtype == torch.bfloat16: |
|
h = h.to(torch.float32) |
|
h = F.interpolate(h, scale_factor=self.ds_ratio, mode="bicubic", align_corners=False).to(org_dtype) |
|
|
|
h = call_module(module, h, emb, context) |
|
hs.append(h) |
|
|
|
h = call_module(_self.middle_block, h, emb, context) |
|
|
|
for module in _self.output_blocks: |
|
|
|
if self.ds_depth_1 is not None: |
|
if hs[-1].shape[-2:] != h.shape[-2:]: |
|
|
|
h = resize_like(h, hs[-1]) |
|
|
|
h = torch.cat([h, hs.pop()], dim=1) |
|
h = call_module(module, h, emb, context) |
|
|
|
|
|
if self.ds_depth_1 == 0 and h.shape[-2:] != x.shape[-2:]: |
|
|
|
h = resize_like(h, x) |
|
|
|
h = h.type(x.dtype) |
|
h = call_module(_self.out, h, emb, context) |
|
|
|
return h |
|
|
|
|
|
if __name__ == "__main__": |
|
import time |
|
|
|
print("create unet") |
|
unet = SdxlUNet2DConditionModel() |
|
|
|
unet.to("cuda") |
|
unet.set_use_memory_efficient_attention(True, False) |
|
unet.set_gradient_checkpointing(True) |
|
unet.train() |
|
|
|
|
|
print("preparing optimizer") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import transformers |
|
|
|
optimizer = transformers.optimization.Adafactor(unet.parameters(), relative_step=True) |
|
|
|
scaler = torch.cuda.amp.GradScaler(enabled=True) |
|
|
|
print("start training") |
|
steps = 10 |
|
batch_size = 1 |
|
|
|
for step in range(steps): |
|
print(f"step {step}") |
|
if step == 1: |
|
time_start = time.perf_counter() |
|
|
|
x = torch.randn(batch_size, 4, 128, 128).cuda() |
|
t = torch.randint(low=0, high=10, size=(batch_size,), device="cuda") |
|
ctx = torch.randn(batch_size, 77, 2048).cuda() |
|
y = torch.randn(batch_size, ADM_IN_CHANNELS).cuda() |
|
|
|
with torch.cuda.amp.autocast(enabled=True): |
|
output = unet(x, t, ctx, y) |
|
target = torch.randn_like(output) |
|
loss = torch.nn.functional.mse_loss(output, target) |
|
|
|
scaler.scale(loss).backward() |
|
scaler.step(optimizer) |
|
scaler.update() |
|
optimizer.zero_grad(set_to_none=True) |
|
|
|
time_end = time.perf_counter() |
|
print(f"elapsed time: {time_end - time_start} [sec] for last {steps - 1} steps") |
|
|