File size: 45,274 Bytes
ea5c647 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 |
# Diffusersのコードをベースとした sd_xl_baseのU-Net
# state dictの形式をSDXLに合わせてある
"""
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
params:
adm_in_channels: 2816
num_classes: sequential
use_checkpoint: True
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [4, 2]
num_res_blocks: 2
channel_mult: [1, 2, 4]
num_head_channels: 64
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: [1, 2, 10] # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16
context_dim: 2048
spatial_transformer_attn_type: softmax-xformers
legacy: False
"""
import math
from types import SimpleNamespace
from typing import Any, Optional
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import functional as F
from einops import rearrange
IN_CHANNELS: int = 4
OUT_CHANNELS: int = 4
ADM_IN_CHANNELS: int = 2816
CONTEXT_DIM: int = 2048
MODEL_CHANNELS: int = 320
TIME_EMBED_DIM = 320 * 4
USE_REENTRANT = True
# region memory efficient attention
# FlashAttentionを使うCrossAttention
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE
# constants
EPSILON = 1e-6
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# flash attention forwards and backwards
# https://arxiv.org/abs/2205.14135
class FlashAttentionFunction(torch.autograd.Function):
@staticmethod
@torch.no_grad()
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
"""Algorithm 2 in the paper"""
device = q.device
dtype = q.dtype
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
o = torch.zeros_like(q)
all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)
scale = q.shape[-1] ** -0.5
if not exists(mask):
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
else:
mask = rearrange(mask, "b n -> b 1 1 n")
mask = mask.split(q_bucket_size, dim=-1)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
mask,
all_row_sums.split(q_bucket_size, dim=-2),
all_row_maxes.split(q_bucket_size, dim=-2),
)
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale
if exists(row_mask):
attn_weights.masked_fill_(~row_mask, max_neg_value)
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(
q_start_index - k_start_index + 1
)
attn_weights.masked_fill_(causal_mask, max_neg_value)
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
attn_weights -= block_row_maxes
exp_weights = torch.exp(attn_weights)
if exists(row_mask):
exp_weights.masked_fill_(~row_mask, 0.0)
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON)
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
exp_values = torch.einsum("... i j, ... j d -> ... i d", exp_weights, vc)
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)
row_maxes.copy_(new_row_maxes)
row_sums.copy_(new_row_sums)
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)
return o
@staticmethod
@torch.no_grad()
def backward(ctx, do):
"""Algorithm 4 in the paper"""
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
q, k, v, o, l, m = ctx.saved_tensors
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
dq = torch.zeros_like(q)
dk = torch.zeros_like(k)
dv = torch.zeros_like(v)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
do.split(q_bucket_size, dim=-2),
mask,
l.split(q_bucket_size, dim=-2),
m.split(q_bucket_size, dim=-2),
dq.split(q_bucket_size, dim=-2),
)
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
dk.split(k_bucket_size, dim=-2),
dv.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(
q_start_index - k_start_index + 1
)
attn_weights.masked_fill_(causal_mask, max_neg_value)
exp_attn_weights = torch.exp(attn_weights - mc)
if exists(row_mask):
exp_attn_weights.masked_fill_(~row_mask, 0.0)
p = exp_attn_weights / lc
dv_chunk = torch.einsum("... i j, ... i d -> ... j d", p, doc)
dp = torch.einsum("... i d, ... j d -> ... i j", doc, vc)
D = (doc * oc).sum(dim=-1, keepdims=True)
ds = p * scale * (dp - D)
dq_chunk = torch.einsum("... i j, ... j d -> ... i d", ds, kc)
dk_chunk = torch.einsum("... i j, ... i d -> ... j d", ds, qc)
dqc.add_(dq_chunk)
dkc.add_(dk_chunk)
dvc.add_(dv_chunk)
return dq, dk, dv, None, None, None, None
# endregion
def get_parameter_dtype(parameter: torch.nn.Module):
return next(parameter.parameters()).dtype
def get_parameter_device(parameter: torch.nn.Module):
return next(parameter.parameters()).device
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
embeddings. :return: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings: flipped from Diffusers original ver because always flip_sin_to_cos=True
emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
# Deep Shrink: We do not common this function, because minimize dependencies.
def resize_like(x, target, mode="bicubic", align_corners=False):
org_dtype = x.dtype
if org_dtype == torch.bfloat16:
x = x.to(torch.float32)
if x.shape[-2:] != target.shape[-2:]:
if mode == "nearest":
x = F.interpolate(x, size=target.shape[-2:], mode=mode)
else:
x = F.interpolate(x, size=target.shape[-2:], mode=mode, align_corners=align_corners)
if org_dtype == torch.bfloat16:
x = x.to(org_dtype)
return x
class GroupNorm32(nn.GroupNorm):
def forward(self, x):
if self.weight.dtype != torch.float32:
return super().forward(x)
return super().forward(x.float()).type(x.dtype)
class ResnetBlock2D(nn.Module):
def __init__(
self,
in_channels,
out_channels,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.in_layers = nn.Sequential(
GroupNorm32(32, in_channels),
nn.SiLU(),
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1),
)
self.emb_layers = nn.Sequential(nn.SiLU(), nn.Linear(TIME_EMBED_DIM, out_channels))
self.out_layers = nn.Sequential(
GroupNorm32(32, out_channels),
nn.SiLU(),
nn.Identity(), # to make state_dict compatible with original model
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
)
if in_channels != out_channels:
self.skip_connection = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
else:
self.skip_connection = nn.Identity()
self.gradient_checkpointing = False
def forward_body(self, x, emb):
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
h = h + emb_out[:, :, None, None]
h = self.out_layers(h)
x = self.skip_connection(x)
return x + h
def forward(self, x, emb):
if self.training and self.gradient_checkpointing:
# print("ResnetBlock2D: gradient_checkpointing")
def create_custom_forward(func):
def custom_forward(*inputs):
return func(*inputs)
return custom_forward
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), x, emb, use_reentrant=USE_REENTRANT)
else:
x = self.forward_body(x, emb)
return x
class Downsample2D(nn.Module):
def __init__(self, channels, out_channels):
super().__init__()
self.channels = channels
self.out_channels = out_channels
self.op = nn.Conv2d(self.channels, self.out_channels, 3, stride=2, padding=1)
self.gradient_checkpointing = False
def forward_body(self, hidden_states):
assert hidden_states.shape[1] == self.channels
hidden_states = self.op(hidden_states)
return hidden_states
def forward(self, hidden_states):
if self.training and self.gradient_checkpointing:
# print("Downsample2D: gradient_checkpointing")
def create_custom_forward(func):
def custom_forward(*inputs):
return func(*inputs)
return custom_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.forward_body), hidden_states, use_reentrant=USE_REENTRANT
)
else:
hidden_states = self.forward_body(hidden_states)
return hidden_states
class CrossAttention(nn.Module):
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
dim_head: int = 64,
upcast_attention: bool = False,
):
super().__init__()
inner_dim = dim_head * heads
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.upcast_attention = upcast_attention
self.scale = dim_head**-0.5
self.heads = heads
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=False)
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=False)
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(inner_dim, query_dim))
# no dropout here
self.use_memory_efficient_attention_xformers = False
self.use_memory_efficient_attention_mem_eff = False
self.use_sdpa = False
def set_use_memory_efficient_attention(self, xformers, mem_eff):
self.use_memory_efficient_attention_xformers = xformers
self.use_memory_efficient_attention_mem_eff = mem_eff
def set_use_sdpa(self, sdpa):
self.use_sdpa = sdpa
def reshape_heads_to_batch_dim(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
return tensor
def reshape_batch_dim_to_heads(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
return tensor
def forward(self, hidden_states, context=None, mask=None):
if self.use_memory_efficient_attention_xformers:
return self.forward_memory_efficient_xformers(hidden_states, context, mask)
if self.use_memory_efficient_attention_mem_eff:
return self.forward_memory_efficient_mem_eff(hidden_states, context, mask)
if self.use_sdpa:
return self.forward_sdpa(hidden_states, context, mask)
query = self.to_q(hidden_states)
context = context if context is not None else hidden_states
key = self.to_k(context)
value = self.to_v(context)
query = self.reshape_heads_to_batch_dim(query)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
hidden_states = self._attention(query, key, value)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# hidden_states = self.to_out[1](hidden_states) # no dropout
return hidden_states
def _attention(self, query, key, value):
if self.upcast_attention:
query = query.float()
key = key.float()
attention_scores = torch.baddbmm(
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
query,
key.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
attention_probs = attention_scores.softmax(dim=-1)
# cast back to the original dtype
attention_probs = attention_probs.to(value.dtype)
# compute attention output
hidden_states = torch.bmm(attention_probs, value)
# reshape hidden_states
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
# TODO support Hypernetworks
def forward_memory_efficient_xformers(self, x, context=None, mask=None):
import xformers.ops
h = self.heads
q_in = self.to_q(x)
context = context if context is not None else x
context = context.to(x.dtype)
k_in = self.to_k(context)
v_in = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b n h d", h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
del q, k, v
out = rearrange(out, "b n h d -> b n (h d)", h=h)
out = self.to_out[0](out)
return out
def forward_memory_efficient_mem_eff(self, x, context=None, mask=None):
flash_func = FlashAttentionFunction
q_bucket_size = 512
k_bucket_size = 1024
h = self.heads
q = self.to_q(x)
context = context if context is not None else x
context = context.to(x.dtype)
k = self.to_k(context)
v = self.to_v(context)
del context, x
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))
out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)
out = rearrange(out, "b h n d -> b n (h d)")
out = self.to_out[0](out)
return out
def forward_sdpa(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = context if context is not None else x
context = context.to(x.dtype)
k_in = self.to_k(context)
v_in = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
out = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
out = rearrange(out, "b h n d -> b n (h d)", h=h)
out = self.to_out[0](out)
return out
# feedforward
class GEGLU(nn.Module):
r"""
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
"""
def __init__(self, dim_in: int, dim_out: int):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def gelu(self, gate):
if gate.device.type != "mps":
return F.gelu(gate)
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
def forward(self, hidden_states):
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
return hidden_states * self.gelu(gate)
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
):
super().__init__()
inner_dim = int(dim * 4) # mult is always 4
self.net = nn.ModuleList([])
# project in
self.net.append(GEGLU(dim, inner_dim))
# project dropout
self.net.append(nn.Identity()) # nn.Dropout(0)) # dummy for dropout with 0
# project out
self.net.append(nn.Linear(inner_dim, dim))
def forward(self, hidden_states):
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
class BasicTransformerBlock(nn.Module):
def __init__(
self, dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: int, upcast_attention: bool = False
):
super().__init__()
self.gradient_checkpointing = False
# 1. Self-Attn
self.attn1 = CrossAttention(
query_dim=dim,
cross_attention_dim=None,
heads=num_attention_heads,
dim_head=attention_head_dim,
upcast_attention=upcast_attention,
)
self.ff = FeedForward(dim)
# 2. Cross-Attn
self.attn2 = CrossAttention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
upcast_attention=upcast_attention,
)
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
# 3. Feed-forward
self.norm3 = nn.LayerNorm(dim)
def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool):
self.attn1.set_use_memory_efficient_attention(xformers, mem_eff)
self.attn2.set_use_memory_efficient_attention(xformers, mem_eff)
def set_use_sdpa(self, sdpa: bool):
self.attn1.set_use_sdpa(sdpa)
self.attn2.set_use_sdpa(sdpa)
def forward_body(self, hidden_states, context=None, timestep=None):
# 1. Self-Attention
norm_hidden_states = self.norm1(hidden_states)
hidden_states = self.attn1(norm_hidden_states) + hidden_states
# 2. Cross-Attention
norm_hidden_states = self.norm2(hidden_states)
hidden_states = self.attn2(norm_hidden_states, context=context) + hidden_states
# 3. Feed-forward
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
return hidden_states
def forward(self, hidden_states, context=None, timestep=None):
if self.training and self.gradient_checkpointing:
# print("BasicTransformerBlock: checkpointing")
def create_custom_forward(func):
def custom_forward(*inputs):
return func(*inputs)
return custom_forward
output = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.forward_body), hidden_states, context, timestep, use_reentrant=USE_REENTRANT
)
else:
output = self.forward_body(hidden_states, context, timestep)
return output
class Transformer2DModel(nn.Module):
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
cross_attention_dim: Optional[int] = None,
use_linear_projection: bool = False,
upcast_attention: bool = False,
num_transformer_layers: int = 1,
):
super().__init__()
self.in_channels = in_channels
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.use_linear_projection = use_linear_projection
self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
# self.norm = GroupNorm32(32, in_channels, eps=1e-6, affine=True)
if use_linear_projection:
self.proj_in = nn.Linear(in_channels, inner_dim)
else:
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
blocks = []
for _ in range(num_transformer_layers):
blocks.append(
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
cross_attention_dim=cross_attention_dim,
upcast_attention=upcast_attention,
)
)
self.transformer_blocks = nn.ModuleList(blocks)
if use_linear_projection:
self.proj_out = nn.Linear(in_channels, inner_dim)
else:
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
self.gradient_checkpointing = False
def set_use_memory_efficient_attention(self, xformers, mem_eff):
for transformer in self.transformer_blocks:
transformer.set_use_memory_efficient_attention(xformers, mem_eff)
def set_use_sdpa(self, sdpa):
for transformer in self.transformer_blocks:
transformer.set_use_sdpa(sdpa)
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None):
# 1. Input
batch, _, height, weight = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
else:
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
hidden_states = self.proj_in(hidden_states)
# 2. Blocks
for block in self.transformer_blocks:
hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep)
# 3. Output
if not self.use_linear_projection:
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
hidden_states = self.proj_out(hidden_states)
else:
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
output = hidden_states + residual
return output
class Upsample2D(nn.Module):
def __init__(self, channels, out_channels):
super().__init__()
self.channels = channels
self.out_channels = out_channels
self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
self.gradient_checkpointing = False
def forward_body(self, hidden_states, output_size=None):
assert hidden_states.shape[1] == self.channels
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
# https://github.com/pytorch/pytorch/issues/86679
dtype = hidden_states.dtype
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(torch.float32)
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
hidden_states = hidden_states.contiguous()
# if `output_size` is passed we force the interpolation output size and do not make use of `scale_factor=2`
if output_size is None:
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
else:
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
# If the input is bfloat16, we cast back to bfloat16
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(dtype)
hidden_states = self.conv(hidden_states)
return hidden_states
def forward(self, hidden_states, output_size=None):
if self.training and self.gradient_checkpointing:
# print("Upsample2D: gradient_checkpointing")
def create_custom_forward(func):
def custom_forward(*inputs):
return func(*inputs)
return custom_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.forward_body), hidden_states, output_size, use_reentrant=USE_REENTRANT
)
else:
hidden_states = self.forward_body(hidden_states, output_size)
return hidden_states
class SdxlUNet2DConditionModel(nn.Module):
_supports_gradient_checkpointing = True
def __init__(
self,
**kwargs,
):
super().__init__()
self.in_channels = IN_CHANNELS
self.out_channels = OUT_CHANNELS
self.model_channels = MODEL_CHANNELS
self.time_embed_dim = TIME_EMBED_DIM
self.adm_in_channels = ADM_IN_CHANNELS
self.gradient_checkpointing = False
# self.sample_size = sample_size
# time embedding
self.time_embed = nn.Sequential(
nn.Linear(self.model_channels, self.time_embed_dim),
nn.SiLU(),
nn.Linear(self.time_embed_dim, self.time_embed_dim),
)
# label embedding
self.label_emb = nn.Sequential(
nn.Sequential(
nn.Linear(self.adm_in_channels, self.time_embed_dim),
nn.SiLU(),
nn.Linear(self.time_embed_dim, self.time_embed_dim),
)
)
# input
self.input_blocks = nn.ModuleList(
[
nn.Sequential(
nn.Conv2d(self.in_channels, self.model_channels, kernel_size=3, padding=(1, 1)),
)
]
)
# level 0
for i in range(2):
layers = [
ResnetBlock2D(
in_channels=1 * self.model_channels,
out_channels=1 * self.model_channels,
),
]
self.input_blocks.append(nn.ModuleList(layers))
self.input_blocks.append(
nn.Sequential(
Downsample2D(
channels=1 * self.model_channels,
out_channels=1 * self.model_channels,
),
)
)
# level 1
for i in range(2):
layers = [
ResnetBlock2D(
in_channels=(1 if i == 0 else 2) * self.model_channels,
out_channels=2 * self.model_channels,
),
Transformer2DModel(
num_attention_heads=2 * self.model_channels // 64,
attention_head_dim=64,
in_channels=2 * self.model_channels,
num_transformer_layers=2,
use_linear_projection=True,
cross_attention_dim=2048,
),
]
self.input_blocks.append(nn.ModuleList(layers))
self.input_blocks.append(
nn.Sequential(
Downsample2D(
channels=2 * self.model_channels,
out_channels=2 * self.model_channels,
),
)
)
# level 2
for i in range(2):
layers = [
ResnetBlock2D(
in_channels=(2 if i == 0 else 4) * self.model_channels,
out_channels=4 * self.model_channels,
),
Transformer2DModel(
num_attention_heads=4 * self.model_channels // 64,
attention_head_dim=64,
in_channels=4 * self.model_channels,
num_transformer_layers=10,
use_linear_projection=True,
cross_attention_dim=2048,
),
]
self.input_blocks.append(nn.ModuleList(layers))
# mid
self.middle_block = nn.ModuleList(
[
ResnetBlock2D(
in_channels=4 * self.model_channels,
out_channels=4 * self.model_channels,
),
Transformer2DModel(
num_attention_heads=4 * self.model_channels // 64,
attention_head_dim=64,
in_channels=4 * self.model_channels,
num_transformer_layers=10,
use_linear_projection=True,
cross_attention_dim=2048,
),
ResnetBlock2D(
in_channels=4 * self.model_channels,
out_channels=4 * self.model_channels,
),
]
)
# output
self.output_blocks = nn.ModuleList([])
# level 2
for i in range(3):
layers = [
ResnetBlock2D(
in_channels=4 * self.model_channels + (4 if i <= 1 else 2) * self.model_channels,
out_channels=4 * self.model_channels,
),
Transformer2DModel(
num_attention_heads=4 * self.model_channels // 64,
attention_head_dim=64,
in_channels=4 * self.model_channels,
num_transformer_layers=10,
use_linear_projection=True,
cross_attention_dim=2048,
),
]
if i == 2:
layers.append(
Upsample2D(
channels=4 * self.model_channels,
out_channels=4 * self.model_channels,
)
)
self.output_blocks.append(nn.ModuleList(layers))
# level 1
for i in range(3):
layers = [
ResnetBlock2D(
in_channels=2 * self.model_channels + (4 if i == 0 else (2 if i == 1 else 1)) * self.model_channels,
out_channels=2 * self.model_channels,
),
Transformer2DModel(
num_attention_heads=2 * self.model_channels // 64,
attention_head_dim=64,
in_channels=2 * self.model_channels,
num_transformer_layers=2,
use_linear_projection=True,
cross_attention_dim=2048,
),
]
if i == 2:
layers.append(
Upsample2D(
channels=2 * self.model_channels,
out_channels=2 * self.model_channels,
)
)
self.output_blocks.append(nn.ModuleList(layers))
# level 0
for i in range(3):
layers = [
ResnetBlock2D(
in_channels=1 * self.model_channels + (2 if i == 0 else 1) * self.model_channels,
out_channels=1 * self.model_channels,
),
]
self.output_blocks.append(nn.ModuleList(layers))
# output
self.out = nn.ModuleList(
[GroupNorm32(32, self.model_channels), nn.SiLU(), nn.Conv2d(self.model_channels, self.out_channels, 3, padding=1)]
)
# region diffusers compatibility
def prepare_config(self):
self.config = SimpleNamespace()
@property
def dtype(self) -> torch.dtype:
# `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
return get_parameter_dtype(self)
@property
def device(self) -> torch.device:
# `torch.device`: The device on which the module is (assuming that all the module parameters are on the same device).
return get_parameter_device(self)
def set_attention_slice(self, slice_size):
raise NotImplementedError("Attention slicing is not supported for this model.")
def is_gradient_checkpointing(self) -> bool:
return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())
def enable_gradient_checkpointing(self):
self.gradient_checkpointing = True
self.set_gradient_checkpointing(value=True)
def disable_gradient_checkpointing(self):
self.gradient_checkpointing = False
self.set_gradient_checkpointing(value=False)
def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool) -> None:
blocks = self.input_blocks + [self.middle_block] + self.output_blocks
for block in blocks:
for module in block:
if hasattr(module, "set_use_memory_efficient_attention"):
# print(module.__class__.__name__)
module.set_use_memory_efficient_attention(xformers, mem_eff)
def set_use_sdpa(self, sdpa: bool) -> None:
blocks = self.input_blocks + [self.middle_block] + self.output_blocks
for block in blocks:
for module in block:
if hasattr(module, "set_use_sdpa"):
module.set_use_sdpa(sdpa)
def set_gradient_checkpointing(self, value=False):
blocks = self.input_blocks + [self.middle_block] + self.output_blocks
for block in blocks:
for module in block.modules():
if hasattr(module, "gradient_checkpointing"):
# print(module.__class__.__name__, module.gradient_checkpointing, "->", value)
module.gradient_checkpointing = value
# endregion
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
# broadcast timesteps to batch dimension
timesteps = timesteps.expand(x.shape[0])
hs = []
t_emb = get_timestep_embedding(timesteps, self.model_channels) # , repeat_only=False)
t_emb = t_emb.to(x.dtype)
emb = self.time_embed(t_emb)
assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}"
assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}"
# assert x.dtype == self.dtype
emb = emb + self.label_emb(y)
def call_module(module, h, emb, context):
x = h
for layer in module:
# print(layer.__class__.__name__, x.dtype, emb.dtype, context.dtype if context is not None else None)
if isinstance(layer, ResnetBlock2D):
x = layer(x, emb)
elif isinstance(layer, Transformer2DModel):
x = layer(x, context)
else:
x = layer(x)
return x
# h = x.type(self.dtype)
h = x
for module in self.input_blocks:
h = call_module(module, h, emb, context)
hs.append(h)
h = call_module(self.middle_block, h, emb, context)
for module in self.output_blocks:
h = torch.cat([h, hs.pop()], dim=1)
h = call_module(module, h, emb, context)
h = h.type(x.dtype)
h = call_module(self.out, h, emb, context)
return h
class InferSdxlUNet2DConditionModel:
def __init__(self, original_unet: SdxlUNet2DConditionModel, **kwargs):
self.delegate = original_unet
# override original model's forward method: because forward is not called by `__call__`
# overriding `__call__` is not enough, because nn.Module.forward has a special handling
self.delegate.forward = self.forward
# Deep Shrink
self.ds_depth_1 = None
self.ds_depth_2 = None
self.ds_timesteps_1 = None
self.ds_timesteps_2 = None
self.ds_ratio = None
# call original model's methods
def __getattr__(self, name):
return getattr(self.delegate, name)
def __call__(self, *args, **kwargs):
return self.delegate(*args, **kwargs)
def set_deep_shrink(self, ds_depth_1, ds_timesteps_1=650, ds_depth_2=None, ds_timesteps_2=None, ds_ratio=0.5):
if ds_depth_1 is None:
print("Deep Shrink is disabled.")
self.ds_depth_1 = None
self.ds_timesteps_1 = None
self.ds_depth_2 = None
self.ds_timesteps_2 = None
self.ds_ratio = None
else:
print(
f"Deep Shrink is enabled: [depth={ds_depth_1}/{ds_depth_2}, timesteps={ds_timesteps_1}/{ds_timesteps_2}, ratio={ds_ratio}]"
)
self.ds_depth_1 = ds_depth_1
self.ds_timesteps_1 = ds_timesteps_1
self.ds_depth_2 = ds_depth_2 if ds_depth_2 is not None else -1
self.ds_timesteps_2 = ds_timesteps_2 if ds_timesteps_2 is not None else 1000
self.ds_ratio = ds_ratio
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
r"""
current implementation is a copy of `SdxlUNet2DConditionModel.forward()` with Deep Shrink.
"""
_self = self.delegate
# broadcast timesteps to batch dimension
timesteps = timesteps.expand(x.shape[0])
hs = []
t_emb = get_timestep_embedding(timesteps, _self.model_channels) # , repeat_only=False)
t_emb = t_emb.to(x.dtype)
emb = _self.time_embed(t_emb)
assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}"
assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}"
# assert x.dtype == _self.dtype
emb = emb + _self.label_emb(y)
def call_module(module, h, emb, context):
x = h
for layer in module:
# print(layer.__class__.__name__, x.dtype, emb.dtype, context.dtype if context is not None else None)
if isinstance(layer, ResnetBlock2D):
x = layer(x, emb)
elif isinstance(layer, Transformer2DModel):
x = layer(x, context)
else:
x = layer(x)
return x
# h = x.type(self.dtype)
h = x
for depth, module in enumerate(_self.input_blocks):
# Deep Shrink
if self.ds_depth_1 is not None:
if (depth == self.ds_depth_1 and timesteps[0] >= self.ds_timesteps_1) or (
self.ds_depth_2 is not None
and depth == self.ds_depth_2
and timesteps[0] < self.ds_timesteps_1
and timesteps[0] >= self.ds_timesteps_2
):
# print("downsample", h.shape, self.ds_ratio)
org_dtype = h.dtype
if org_dtype == torch.bfloat16:
h = h.to(torch.float32)
h = F.interpolate(h, scale_factor=self.ds_ratio, mode="bicubic", align_corners=False).to(org_dtype)
h = call_module(module, h, emb, context)
hs.append(h)
h = call_module(_self.middle_block, h, emb, context)
for module in _self.output_blocks:
# Deep Shrink
if self.ds_depth_1 is not None:
if hs[-1].shape[-2:] != h.shape[-2:]:
# print("upsample", h.shape, hs[-1].shape)
h = resize_like(h, hs[-1])
h = torch.cat([h, hs.pop()], dim=1)
h = call_module(module, h, emb, context)
# Deep Shrink: in case of depth 0
if self.ds_depth_1 == 0 and h.shape[-2:] != x.shape[-2:]:
# print("upsample", h.shape, x.shape)
h = resize_like(h, x)
h = h.type(x.dtype)
h = call_module(_self.out, h, emb, context)
return h
if __name__ == "__main__":
import time
print("create unet")
unet = SdxlUNet2DConditionModel()
unet.to("cuda")
unet.set_use_memory_efficient_attention(True, False)
unet.set_gradient_checkpointing(True)
unet.train()
# 使用メモリ量確認用の疑似学習ループ
print("preparing optimizer")
# optimizer = torch.optim.SGD(unet.parameters(), lr=1e-3, nesterov=True, momentum=0.9) # not working
# import bitsandbytes
# optimizer = bitsandbytes.adam.Adam8bit(unet.parameters(), lr=1e-3) # not working
# optimizer = bitsandbytes.optim.RMSprop8bit(unet.parameters(), lr=1e-3) # working at 23.5 GB with torch2
# optimizer=bitsandbytes.optim.Adagrad8bit(unet.parameters(), lr=1e-3) # working at 23.5 GB with torch2
import transformers
optimizer = transformers.optimization.Adafactor(unet.parameters(), relative_step=True) # working at 22.2GB with torch2
scaler = torch.cuda.amp.GradScaler(enabled=True)
print("start training")
steps = 10
batch_size = 1
for step in range(steps):
print(f"step {step}")
if step == 1:
time_start = time.perf_counter()
x = torch.randn(batch_size, 4, 128, 128).cuda() # 1024x1024
t = torch.randint(low=0, high=10, size=(batch_size,), device="cuda")
ctx = torch.randn(batch_size, 77, 2048).cuda()
y = torch.randn(batch_size, ADM_IN_CHANNELS).cuda()
with torch.cuda.amp.autocast(enabled=True):
output = unet(x, t, ctx, y)
target = torch.randn_like(output)
loss = torch.nn.functional.mse_loss(output, target)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
time_end = time.perf_counter()
print(f"elapsed time: {time_end - time_start} [sec] for last {steps - 1} steps")
|