|
import argparse |
|
from dataclasses import ( |
|
asdict, |
|
dataclass, |
|
) |
|
import functools |
|
import random |
|
from textwrap import dedent, indent |
|
import json |
|
from pathlib import Path |
|
|
|
from typing import ( |
|
List, |
|
Optional, |
|
Sequence, |
|
Tuple, |
|
Union, |
|
) |
|
|
|
import toml |
|
import voluptuous |
|
from voluptuous import ( |
|
Any, |
|
ExactSequence, |
|
MultipleInvalid, |
|
Object, |
|
Required, |
|
Schema, |
|
) |
|
from transformers import CLIPTokenizer |
|
|
|
from . import train_util |
|
from .train_util import ( |
|
DreamBoothSubset, |
|
FineTuningSubset, |
|
ControlNetSubset, |
|
DreamBoothDataset, |
|
FineTuningDataset, |
|
ControlNetDataset, |
|
DatasetGroup, |
|
) |
|
|
|
|
|
def add_config_arguments(parser: argparse.ArgumentParser): |
|
parser.add_argument("--dataset_config", type=Path, default=None, help="config file for detail settings / 詳細な設定用の設定ファイル") |
|
|
|
|
|
|
|
@dataclass |
|
class BaseSubsetParams: |
|
image_dir: Optional[str] = None |
|
num_repeats: int = 1 |
|
shuffle_caption: bool = False |
|
caption_separator: str = ',', |
|
keep_tokens: int = 0 |
|
keep_tokens_separator: str = None, |
|
color_aug: bool = False |
|
flip_aug: bool = False |
|
face_crop_aug_range: Optional[Tuple[float, float]] = None |
|
random_crop: bool = False |
|
caption_prefix: Optional[str] = None |
|
caption_suffix: Optional[str] = None |
|
caption_dropout_rate: float = 0.0 |
|
caption_dropout_every_n_epochs: int = 0 |
|
caption_tag_dropout_rate: float = 0.0 |
|
token_warmup_min: int = 1 |
|
token_warmup_step: float = 0 |
|
|
|
@dataclass |
|
class DreamBoothSubsetParams(BaseSubsetParams): |
|
is_reg: bool = False |
|
class_tokens: Optional[str] = None |
|
caption_extension: str = ".caption" |
|
|
|
@dataclass |
|
class FineTuningSubsetParams(BaseSubsetParams): |
|
metadata_file: Optional[str] = None |
|
|
|
@dataclass |
|
class ControlNetSubsetParams(BaseSubsetParams): |
|
conditioning_data_dir: str = None |
|
caption_extension: str = ".caption" |
|
|
|
@dataclass |
|
class BaseDatasetParams: |
|
tokenizer: Union[CLIPTokenizer, List[CLIPTokenizer]] = None |
|
max_token_length: int = None |
|
resolution: Optional[Tuple[int, int]] = None |
|
debug_dataset: bool = False |
|
|
|
@dataclass |
|
class DreamBoothDatasetParams(BaseDatasetParams): |
|
batch_size: int = 1 |
|
enable_bucket: bool = False |
|
min_bucket_reso: int = 256 |
|
max_bucket_reso: int = 1024 |
|
bucket_reso_steps: int = 64 |
|
bucket_no_upscale: bool = False |
|
prior_loss_weight: float = 1.0 |
|
|
|
@dataclass |
|
class FineTuningDatasetParams(BaseDatasetParams): |
|
batch_size: int = 1 |
|
enable_bucket: bool = False |
|
min_bucket_reso: int = 256 |
|
max_bucket_reso: int = 1024 |
|
bucket_reso_steps: int = 64 |
|
bucket_no_upscale: bool = False |
|
|
|
@dataclass |
|
class ControlNetDatasetParams(BaseDatasetParams): |
|
batch_size: int = 1 |
|
enable_bucket: bool = False |
|
min_bucket_reso: int = 256 |
|
max_bucket_reso: int = 1024 |
|
bucket_reso_steps: int = 64 |
|
bucket_no_upscale: bool = False |
|
|
|
@dataclass |
|
class SubsetBlueprint: |
|
params: Union[DreamBoothSubsetParams, FineTuningSubsetParams] |
|
|
|
@dataclass |
|
class DatasetBlueprint: |
|
is_dreambooth: bool |
|
is_controlnet: bool |
|
params: Union[DreamBoothDatasetParams, FineTuningDatasetParams] |
|
subsets: Sequence[SubsetBlueprint] |
|
|
|
@dataclass |
|
class DatasetGroupBlueprint: |
|
datasets: Sequence[DatasetBlueprint] |
|
@dataclass |
|
class Blueprint: |
|
dataset_group: DatasetGroupBlueprint |
|
|
|
|
|
class ConfigSanitizer: |
|
|
|
@staticmethod |
|
def __validate_and_convert_twodim(klass, value: Sequence) -> Tuple: |
|
Schema(ExactSequence([klass, klass]))(value) |
|
return tuple(value) |
|
|
|
|
|
@staticmethod |
|
def __validate_and_convert_scalar_or_twodim(klass, value: Union[float, Sequence]) -> Tuple: |
|
Schema(Any(klass, ExactSequence([klass, klass])))(value) |
|
try: |
|
Schema(klass)(value) |
|
return (value, value) |
|
except: |
|
return ConfigSanitizer.__validate_and_convert_twodim(klass, value) |
|
|
|
|
|
SUBSET_ASCENDABLE_SCHEMA = { |
|
"color_aug": bool, |
|
"face_crop_aug_range": functools.partial(__validate_and_convert_twodim.__func__, float), |
|
"flip_aug": bool, |
|
"num_repeats": int, |
|
"random_crop": bool, |
|
"shuffle_caption": bool, |
|
"keep_tokens": int, |
|
"keep_tokens_separator": str, |
|
"token_warmup_min": int, |
|
"token_warmup_step": Any(float,int), |
|
"caption_prefix": str, |
|
"caption_suffix": str, |
|
} |
|
|
|
DO_SUBSET_ASCENDABLE_SCHEMA = { |
|
"caption_dropout_every_n_epochs": int, |
|
"caption_dropout_rate": Any(float, int), |
|
"caption_tag_dropout_rate": Any(float, int), |
|
} |
|
|
|
DB_SUBSET_ASCENDABLE_SCHEMA = { |
|
"caption_extension": str, |
|
"class_tokens": str, |
|
} |
|
DB_SUBSET_DISTINCT_SCHEMA = { |
|
Required("image_dir"): str, |
|
"is_reg": bool, |
|
} |
|
|
|
FT_SUBSET_DISTINCT_SCHEMA = { |
|
Required("metadata_file"): str, |
|
"image_dir": str, |
|
} |
|
CN_SUBSET_ASCENDABLE_SCHEMA = { |
|
"caption_extension": str, |
|
} |
|
CN_SUBSET_DISTINCT_SCHEMA = { |
|
Required("image_dir"): str, |
|
Required("conditioning_data_dir"): str, |
|
} |
|
|
|
|
|
DATASET_ASCENDABLE_SCHEMA = { |
|
"batch_size": int, |
|
"bucket_no_upscale": bool, |
|
"bucket_reso_steps": int, |
|
"enable_bucket": bool, |
|
"max_bucket_reso": int, |
|
"min_bucket_reso": int, |
|
"resolution": functools.partial(__validate_and_convert_scalar_or_twodim.__func__, int), |
|
} |
|
|
|
|
|
ARGPARSE_SPECIFIC_SCHEMA = { |
|
"debug_dataset": bool, |
|
"max_token_length": Any(None, int), |
|
"prior_loss_weight": Any(float, int), |
|
} |
|
|
|
ARGPARSE_NULLABLE_OPTNAMES = [ |
|
"face_crop_aug_range", |
|
"resolution", |
|
] |
|
|
|
ARGPARSE_OPTNAME_TO_CONFIG_OPTNAME = { |
|
"train_batch_size": "batch_size", |
|
"dataset_repeats": "num_repeats", |
|
} |
|
|
|
def __init__(self, support_dreambooth: bool, support_finetuning: bool, support_controlnet: bool, support_dropout: bool) -> None: |
|
assert support_dreambooth or support_finetuning or support_controlnet, "Neither DreamBooth mode nor fine tuning mode specified. Please specify one mode or more. / DreamBooth モードか fine tuning モードのどちらも指定されていません。1つ以上指定してください。" |
|
|
|
self.db_subset_schema = self.__merge_dict( |
|
self.SUBSET_ASCENDABLE_SCHEMA, |
|
self.DB_SUBSET_DISTINCT_SCHEMA, |
|
self.DB_SUBSET_ASCENDABLE_SCHEMA, |
|
self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {}, |
|
) |
|
|
|
self.ft_subset_schema = self.__merge_dict( |
|
self.SUBSET_ASCENDABLE_SCHEMA, |
|
self.FT_SUBSET_DISTINCT_SCHEMA, |
|
self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {}, |
|
) |
|
|
|
self.cn_subset_schema = self.__merge_dict( |
|
self.SUBSET_ASCENDABLE_SCHEMA, |
|
self.CN_SUBSET_DISTINCT_SCHEMA, |
|
self.CN_SUBSET_ASCENDABLE_SCHEMA, |
|
self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {}, |
|
) |
|
|
|
self.db_dataset_schema = self.__merge_dict( |
|
self.DATASET_ASCENDABLE_SCHEMA, |
|
self.SUBSET_ASCENDABLE_SCHEMA, |
|
self.DB_SUBSET_ASCENDABLE_SCHEMA, |
|
self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {}, |
|
{"subsets": [self.db_subset_schema]}, |
|
) |
|
|
|
self.ft_dataset_schema = self.__merge_dict( |
|
self.DATASET_ASCENDABLE_SCHEMA, |
|
self.SUBSET_ASCENDABLE_SCHEMA, |
|
self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {}, |
|
{"subsets": [self.ft_subset_schema]}, |
|
) |
|
|
|
self.cn_dataset_schema = self.__merge_dict( |
|
self.DATASET_ASCENDABLE_SCHEMA, |
|
self.SUBSET_ASCENDABLE_SCHEMA, |
|
self.CN_SUBSET_ASCENDABLE_SCHEMA, |
|
self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {}, |
|
{"subsets": [self.cn_subset_schema]}, |
|
) |
|
|
|
if support_dreambooth and support_finetuning: |
|
def validate_flex_dataset(dataset_config: dict): |
|
subsets_config = dataset_config.get("subsets", []) |
|
|
|
if support_controlnet and all(["conditioning_data_dir" in subset for subset in subsets_config]): |
|
return Schema(self.cn_dataset_schema)(dataset_config) |
|
|
|
|
|
elif all(["metadata_file" in subset for subset in subsets_config]): |
|
return Schema(self.ft_dataset_schema)(dataset_config) |
|
|
|
|
|
elif all(["metadata_file" not in subset for subset in subsets_config]): |
|
return Schema(self.db_dataset_schema)(dataset_config) |
|
else: |
|
raise voluptuous.Invalid("DreamBooth subset and fine tuning subset cannot be mixed in the same dataset. Please split them into separate datasets. / DreamBoothのサブセットとfine tuninのサブセットを同一のデータセットに混在させることはできません。別々のデータセットに分割してください。") |
|
|
|
self.dataset_schema = validate_flex_dataset |
|
elif support_dreambooth: |
|
self.dataset_schema = self.db_dataset_schema |
|
elif support_finetuning: |
|
self.dataset_schema = self.ft_dataset_schema |
|
elif support_controlnet: |
|
self.dataset_schema = self.cn_dataset_schema |
|
|
|
self.general_schema = self.__merge_dict( |
|
self.DATASET_ASCENDABLE_SCHEMA, |
|
self.SUBSET_ASCENDABLE_SCHEMA, |
|
self.DB_SUBSET_ASCENDABLE_SCHEMA if support_dreambooth else {}, |
|
self.CN_SUBSET_ASCENDABLE_SCHEMA if support_controlnet else {}, |
|
self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {}, |
|
) |
|
|
|
self.user_config_validator = Schema({ |
|
"general": self.general_schema, |
|
"datasets": [self.dataset_schema], |
|
}) |
|
|
|
self.argparse_schema = self.__merge_dict( |
|
self.general_schema, |
|
self.ARGPARSE_SPECIFIC_SCHEMA, |
|
{optname: Any(None, self.general_schema[optname]) for optname in self.ARGPARSE_NULLABLE_OPTNAMES}, |
|
{a_name: self.general_schema[c_name] for a_name, c_name in self.ARGPARSE_OPTNAME_TO_CONFIG_OPTNAME.items()}, |
|
) |
|
|
|
self.argparse_config_validator = Schema(Object(self.argparse_schema), extra=voluptuous.ALLOW_EXTRA) |
|
|
|
def sanitize_user_config(self, user_config: dict) -> dict: |
|
try: |
|
return self.user_config_validator(user_config) |
|
except MultipleInvalid: |
|
|
|
print("Invalid user config / ユーザ設定の形式が正しくないようです") |
|
raise |
|
|
|
|
|
|
|
def sanitize_argparse_namespace(self, argparse_namespace: argparse.Namespace) -> argparse.Namespace: |
|
try: |
|
return self.argparse_config_validator(argparse_namespace) |
|
except MultipleInvalid: |
|
|
|
print("Invalid cmdline parsed arguments. This should be a bug. / コマンドラインのパース結果が正しくないようです。プログラムのバグの可能性が高いです。") |
|
raise |
|
|
|
|
|
@staticmethod |
|
def __merge_dict(*dict_list: dict) -> dict: |
|
merged = {} |
|
for schema in dict_list: |
|
|
|
for k, v in schema.items(): |
|
merged[k] = v |
|
return merged |
|
|
|
|
|
class BlueprintGenerator: |
|
BLUEPRINT_PARAM_NAME_TO_CONFIG_OPTNAME = { |
|
} |
|
|
|
def __init__(self, sanitizer: ConfigSanitizer): |
|
self.sanitizer = sanitizer |
|
|
|
|
|
def generate(self, user_config: dict, argparse_namespace: argparse.Namespace, **runtime_params) -> Blueprint: |
|
sanitized_user_config = self.sanitizer.sanitize_user_config(user_config) |
|
sanitized_argparse_namespace = self.sanitizer.sanitize_argparse_namespace(argparse_namespace) |
|
|
|
|
|
|
|
optname_map = self.sanitizer.ARGPARSE_OPTNAME_TO_CONFIG_OPTNAME |
|
argparse_config = {optname_map.get(optname, optname): value for optname, value in vars(sanitized_argparse_namespace).items()} |
|
|
|
general_config = sanitized_user_config.get("general", {}) |
|
|
|
dataset_blueprints = [] |
|
for dataset_config in sanitized_user_config.get("datasets", []): |
|
|
|
subsets = dataset_config.get("subsets", []) |
|
is_dreambooth = all(["metadata_file" not in subset for subset in subsets]) |
|
is_controlnet = all(["conditioning_data_dir" in subset for subset in subsets]) |
|
if is_controlnet: |
|
subset_params_klass = ControlNetSubsetParams |
|
dataset_params_klass = ControlNetDatasetParams |
|
elif is_dreambooth: |
|
subset_params_klass = DreamBoothSubsetParams |
|
dataset_params_klass = DreamBoothDatasetParams |
|
else: |
|
subset_params_klass = FineTuningSubsetParams |
|
dataset_params_klass = FineTuningDatasetParams |
|
|
|
subset_blueprints = [] |
|
for subset_config in subsets: |
|
params = self.generate_params_by_fallbacks(subset_params_klass, |
|
[subset_config, dataset_config, general_config, argparse_config, runtime_params]) |
|
subset_blueprints.append(SubsetBlueprint(params)) |
|
|
|
params = self.generate_params_by_fallbacks(dataset_params_klass, |
|
[dataset_config, general_config, argparse_config, runtime_params]) |
|
dataset_blueprints.append(DatasetBlueprint(is_dreambooth, is_controlnet, params, subset_blueprints)) |
|
|
|
dataset_group_blueprint = DatasetGroupBlueprint(dataset_blueprints) |
|
|
|
return Blueprint(dataset_group_blueprint) |
|
|
|
@staticmethod |
|
def generate_params_by_fallbacks(param_klass, fallbacks: Sequence[dict]): |
|
name_map = BlueprintGenerator.BLUEPRINT_PARAM_NAME_TO_CONFIG_OPTNAME |
|
search_value = BlueprintGenerator.search_value |
|
default_params = asdict(param_klass()) |
|
param_names = default_params.keys() |
|
|
|
params = {name: search_value(name_map.get(name, name), fallbacks, default_params.get(name)) for name in param_names} |
|
|
|
return param_klass(**params) |
|
|
|
@staticmethod |
|
def search_value(key: str, fallbacks: Sequence[dict], default_value = None): |
|
for cand in fallbacks: |
|
value = cand.get(key) |
|
if value is not None: |
|
return value |
|
|
|
return default_value |
|
|
|
|
|
def generate_dataset_group_by_blueprint(dataset_group_blueprint: DatasetGroupBlueprint): |
|
datasets: List[Union[DreamBoothDataset, FineTuningDataset, ControlNetDataset]] = [] |
|
|
|
for dataset_blueprint in dataset_group_blueprint.datasets: |
|
if dataset_blueprint.is_controlnet: |
|
subset_klass = ControlNetSubset |
|
dataset_klass = ControlNetDataset |
|
elif dataset_blueprint.is_dreambooth: |
|
subset_klass = DreamBoothSubset |
|
dataset_klass = DreamBoothDataset |
|
else: |
|
subset_klass = FineTuningSubset |
|
dataset_klass = FineTuningDataset |
|
|
|
subsets = [subset_klass(**asdict(subset_blueprint.params)) for subset_blueprint in dataset_blueprint.subsets] |
|
dataset = dataset_klass(subsets=subsets, **asdict(dataset_blueprint.params)) |
|
datasets.append(dataset) |
|
|
|
|
|
info = "" |
|
for i, dataset in enumerate(datasets): |
|
is_dreambooth = isinstance(dataset, DreamBoothDataset) |
|
is_controlnet = isinstance(dataset, ControlNetDataset) |
|
info += dedent(f"""\ |
|
[Dataset {i}] |
|
batch_size: {dataset.batch_size} |
|
resolution: {(dataset.width, dataset.height)} |
|
enable_bucket: {dataset.enable_bucket} |
|
""") |
|
|
|
if dataset.enable_bucket: |
|
info += indent(dedent(f"""\ |
|
min_bucket_reso: {dataset.min_bucket_reso} |
|
max_bucket_reso: {dataset.max_bucket_reso} |
|
bucket_reso_steps: {dataset.bucket_reso_steps} |
|
bucket_no_upscale: {dataset.bucket_no_upscale} |
|
\n"""), " ") |
|
else: |
|
info += "\n" |
|
|
|
for j, subset in enumerate(dataset.subsets): |
|
info += indent(dedent(f"""\ |
|
[Subset {j} of Dataset {i}] |
|
image_dir: "{subset.image_dir}" |
|
image_count: {subset.img_count} |
|
num_repeats: {subset.num_repeats} |
|
shuffle_caption: {subset.shuffle_caption} |
|
keep_tokens: {subset.keep_tokens} |
|
keep_tokens_separator: {subset.keep_tokens_separator} |
|
caption_dropout_rate: {subset.caption_dropout_rate} |
|
caption_dropout_every_n_epoches: {subset.caption_dropout_every_n_epochs} |
|
caption_tag_dropout_rate: {subset.caption_tag_dropout_rate} |
|
caption_prefix: {subset.caption_prefix} |
|
caption_suffix: {subset.caption_suffix} |
|
color_aug: {subset.color_aug} |
|
flip_aug: {subset.flip_aug} |
|
face_crop_aug_range: {subset.face_crop_aug_range} |
|
random_crop: {subset.random_crop} |
|
token_warmup_min: {subset.token_warmup_min}, |
|
token_warmup_step: {subset.token_warmup_step}, |
|
"""), " ") |
|
|
|
if is_dreambooth: |
|
info += indent(dedent(f"""\ |
|
is_reg: {subset.is_reg} |
|
class_tokens: {subset.class_tokens} |
|
caption_extension: {subset.caption_extension} |
|
\n"""), " ") |
|
elif not is_controlnet: |
|
info += indent(dedent(f"""\ |
|
metadata_file: {subset.metadata_file} |
|
\n"""), " ") |
|
|
|
print(info) |
|
|
|
|
|
|
|
seed = random.randint(0, 2**31) |
|
for i, dataset in enumerate(datasets): |
|
print(f"[Dataset {i}]") |
|
dataset.make_buckets() |
|
dataset.set_seed(seed) |
|
|
|
return DatasetGroup(datasets) |
|
|
|
|
|
def generate_dreambooth_subsets_config_by_subdirs(train_data_dir: Optional[str] = None, reg_data_dir: Optional[str] = None): |
|
def extract_dreambooth_params(name: str) -> Tuple[int, str]: |
|
tokens = name.split('_') |
|
try: |
|
n_repeats = int(tokens[0]) |
|
except ValueError as e: |
|
print(f"ignore directory without repeats / 繰り返し回数のないディレクトリを無視します: {name}") |
|
return 0, "" |
|
caption_by_folder = '_'.join(tokens[1:]) |
|
return n_repeats, caption_by_folder |
|
|
|
def generate(base_dir: Optional[str], is_reg: bool): |
|
if base_dir is None: |
|
return [] |
|
|
|
base_dir: Path = Path(base_dir) |
|
if not base_dir.is_dir(): |
|
return [] |
|
|
|
subsets_config = [] |
|
for subdir in base_dir.iterdir(): |
|
if not subdir.is_dir(): |
|
continue |
|
|
|
num_repeats, class_tokens = extract_dreambooth_params(subdir.name) |
|
if num_repeats < 1: |
|
continue |
|
|
|
subset_config = {"image_dir": str(subdir), "num_repeats": num_repeats, "is_reg": is_reg, "class_tokens": class_tokens} |
|
subsets_config.append(subset_config) |
|
|
|
return subsets_config |
|
|
|
subsets_config = [] |
|
subsets_config += generate(train_data_dir, False) |
|
subsets_config += generate(reg_data_dir, True) |
|
|
|
return subsets_config |
|
|
|
|
|
def generate_controlnet_subsets_config_by_subdirs(train_data_dir: Optional[str] = None, conditioning_data_dir: Optional[str] = None, caption_extension: str = ".txt"): |
|
def generate(base_dir: Optional[str]): |
|
if base_dir is None: |
|
return [] |
|
|
|
base_dir: Path = Path(base_dir) |
|
if not base_dir.is_dir(): |
|
return [] |
|
|
|
subsets_config = [] |
|
subset_config = {"image_dir": train_data_dir, "conditioning_data_dir": conditioning_data_dir, "caption_extension": caption_extension, "num_repeats": 1} |
|
subsets_config.append(subset_config) |
|
|
|
return subsets_config |
|
|
|
subsets_config = [] |
|
subsets_config += generate(train_data_dir) |
|
|
|
return subsets_config |
|
|
|
|
|
def load_user_config(file: str) -> dict: |
|
file: Path = Path(file) |
|
if not file.is_file(): |
|
raise ValueError(f"file not found / ファイルが見つかりません: {file}") |
|
|
|
if file.name.lower().endswith('.json'): |
|
try: |
|
with open(file, 'r') as f: |
|
config = json.load(f) |
|
except Exception: |
|
print(f"Error on parsing JSON config file. Please check the format. / JSON 形式の設定ファイルの読み込みに失敗しました。文法が正しいか確認してください。: {file}") |
|
raise |
|
elif file.name.lower().endswith('.toml'): |
|
try: |
|
config = toml.load(file) |
|
except Exception: |
|
print(f"Error on parsing TOML config file. Please check the format. / TOML 形式の設定ファイルの読み込みに失敗しました。文法が正しいか確認してください。: {file}") |
|
raise |
|
else: |
|
raise ValueError(f"not supported config file format / 対応していない設定ファイルの形式です: {file}") |
|
|
|
return config |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--support_dreambooth", action="store_true") |
|
parser.add_argument("--support_finetuning", action="store_true") |
|
parser.add_argument("--support_controlnet", action="store_true") |
|
parser.add_argument("--support_dropout", action="store_true") |
|
parser.add_argument("dataset_config") |
|
config_args, remain = parser.parse_known_args() |
|
|
|
parser = argparse.ArgumentParser() |
|
train_util.add_dataset_arguments(parser, config_args.support_dreambooth, config_args.support_finetuning, config_args.support_dropout) |
|
train_util.add_training_arguments(parser, config_args.support_dreambooth) |
|
argparse_namespace = parser.parse_args(remain) |
|
train_util.prepare_dataset_args(argparse_namespace, config_args.support_finetuning) |
|
|
|
print("[argparse_namespace]") |
|
print(vars(argparse_namespace)) |
|
|
|
user_config = load_user_config(config_args.dataset_config) |
|
|
|
print("\n[user_config]") |
|
print(user_config) |
|
|
|
sanitizer = ConfigSanitizer(config_args.support_dreambooth, config_args.support_finetuning, config_args.support_controlnet, config_args.support_dropout) |
|
sanitized_user_config = sanitizer.sanitize_user_config(user_config) |
|
|
|
print("\n[sanitized_user_config]") |
|
print(sanitized_user_config) |
|
|
|
blueprint = BlueprintGenerator(sanitizer).generate(user_config, argparse_namespace) |
|
|
|
print("\n[blueprint]") |
|
print(blueprint) |
|
|