File size: 22,032 Bytes
ea5c647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
import argparse
from dataclasses import (
  asdict,
  dataclass,
)
import functools
import random
from textwrap import dedent, indent
import json
from pathlib import Path
# from toolz import curry
from typing import (
  List,
  Optional,
  Sequence,
  Tuple,
  Union,
)

import toml
import voluptuous
from voluptuous import (
  Any,
  ExactSequence,
  MultipleInvalid,
  Object,
  Required,
  Schema,
)
from transformers import CLIPTokenizer

from . import train_util
from .train_util import (
  DreamBoothSubset,
  FineTuningSubset,
  ControlNetSubset,
  DreamBoothDataset,
  FineTuningDataset,
  ControlNetDataset,
  DatasetGroup,
)


def add_config_arguments(parser: argparse.ArgumentParser):
  parser.add_argument("--dataset_config", type=Path, default=None, help="config file for detail settings / 詳細な設定用の設定ファイル")

# TODO: inherit Params class in Subset, Dataset

@dataclass
class BaseSubsetParams:
  image_dir: Optional[str] = None
  num_repeats: int = 1
  shuffle_caption: bool = False
  caption_separator: str = ',',
  keep_tokens: int = 0
  keep_tokens_separator: str = None,
  color_aug: bool = False
  flip_aug: bool = False
  face_crop_aug_range: Optional[Tuple[float, float]] = None
  random_crop: bool = False
  caption_prefix: Optional[str] = None
  caption_suffix: Optional[str] = None
  caption_dropout_rate: float = 0.0
  caption_dropout_every_n_epochs: int = 0
  caption_tag_dropout_rate: float = 0.0
  token_warmup_min: int = 1
  token_warmup_step: float = 0

@dataclass
class DreamBoothSubsetParams(BaseSubsetParams):
  is_reg: bool = False
  class_tokens: Optional[str] = None
  caption_extension: str = ".caption"

@dataclass
class FineTuningSubsetParams(BaseSubsetParams):
  metadata_file: Optional[str] = None

@dataclass
class ControlNetSubsetParams(BaseSubsetParams):
  conditioning_data_dir: str = None
  caption_extension: str = ".caption"

@dataclass
class BaseDatasetParams:
  tokenizer: Union[CLIPTokenizer, List[CLIPTokenizer]] = None
  max_token_length: int = None
  resolution: Optional[Tuple[int, int]] = None
  debug_dataset: bool = False

@dataclass
class DreamBoothDatasetParams(BaseDatasetParams):
  batch_size: int = 1
  enable_bucket: bool = False
  min_bucket_reso: int = 256
  max_bucket_reso: int = 1024
  bucket_reso_steps: int = 64
  bucket_no_upscale: bool = False
  prior_loss_weight: float = 1.0

@dataclass
class FineTuningDatasetParams(BaseDatasetParams):
  batch_size: int = 1
  enable_bucket: bool = False
  min_bucket_reso: int = 256
  max_bucket_reso: int = 1024
  bucket_reso_steps: int = 64
  bucket_no_upscale: bool = False

@dataclass
class ControlNetDatasetParams(BaseDatasetParams):
  batch_size: int = 1
  enable_bucket: bool = False
  min_bucket_reso: int = 256
  max_bucket_reso: int = 1024
  bucket_reso_steps: int = 64
  bucket_no_upscale: bool = False

@dataclass
class SubsetBlueprint:
  params: Union[DreamBoothSubsetParams, FineTuningSubsetParams]

@dataclass
class DatasetBlueprint:
  is_dreambooth: bool
  is_controlnet: bool
  params: Union[DreamBoothDatasetParams, FineTuningDatasetParams]
  subsets: Sequence[SubsetBlueprint]

@dataclass
class DatasetGroupBlueprint:
  datasets: Sequence[DatasetBlueprint]
@dataclass
class Blueprint:
  dataset_group: DatasetGroupBlueprint


class ConfigSanitizer:
  # @curry
  @staticmethod
  def __validate_and_convert_twodim(klass, value: Sequence) -> Tuple:
    Schema(ExactSequence([klass, klass]))(value)
    return tuple(value)

  # @curry
  @staticmethod
  def __validate_and_convert_scalar_or_twodim(klass, value: Union[float, Sequence]) -> Tuple:
    Schema(Any(klass, ExactSequence([klass, klass])))(value)
    try:
      Schema(klass)(value)
      return (value, value)
    except:
      return ConfigSanitizer.__validate_and_convert_twodim(klass, value)

  # subset schema
  SUBSET_ASCENDABLE_SCHEMA = {
    "color_aug": bool,
    "face_crop_aug_range": functools.partial(__validate_and_convert_twodim.__func__, float),
    "flip_aug": bool,
    "num_repeats": int,
    "random_crop": bool,
    "shuffle_caption": bool,
    "keep_tokens": int,
    "keep_tokens_separator": str,
    "token_warmup_min": int,
    "token_warmup_step": Any(float,int),
    "caption_prefix": str,
    "caption_suffix": str,
  }
  # DO means DropOut
  DO_SUBSET_ASCENDABLE_SCHEMA = {
    "caption_dropout_every_n_epochs": int,
    "caption_dropout_rate": Any(float, int),
    "caption_tag_dropout_rate": Any(float, int),
  }
  # DB means DreamBooth
  DB_SUBSET_ASCENDABLE_SCHEMA = {
    "caption_extension": str,
    "class_tokens": str,
  }
  DB_SUBSET_DISTINCT_SCHEMA = {
    Required("image_dir"): str,
    "is_reg": bool,
  }
  # FT means FineTuning
  FT_SUBSET_DISTINCT_SCHEMA = {
    Required("metadata_file"): str,
    "image_dir": str,
  }
  CN_SUBSET_ASCENDABLE_SCHEMA = {
    "caption_extension": str,
  }
  CN_SUBSET_DISTINCT_SCHEMA = {
    Required("image_dir"): str,
    Required("conditioning_data_dir"): str,
  }

  # datasets schema
  DATASET_ASCENDABLE_SCHEMA = {
    "batch_size": int,
    "bucket_no_upscale": bool,
    "bucket_reso_steps": int,
    "enable_bucket": bool,
    "max_bucket_reso": int,
    "min_bucket_reso": int,
    "resolution": functools.partial(__validate_and_convert_scalar_or_twodim.__func__, int),
  }

  # options handled by argparse but not handled by user config
  ARGPARSE_SPECIFIC_SCHEMA = {
    "debug_dataset": bool,
    "max_token_length": Any(None, int),
    "prior_loss_weight": Any(float, int),
  }
  # for handling default None value of argparse
  ARGPARSE_NULLABLE_OPTNAMES = [
    "face_crop_aug_range",
    "resolution",
  ]
  # prepare map because option name may differ among argparse and user config
  ARGPARSE_OPTNAME_TO_CONFIG_OPTNAME = {
    "train_batch_size": "batch_size",
    "dataset_repeats": "num_repeats",
  }

  def __init__(self, support_dreambooth: bool, support_finetuning: bool, support_controlnet: bool, support_dropout: bool) -> None:
    assert support_dreambooth or support_finetuning or support_controlnet, "Neither DreamBooth mode nor fine tuning mode specified. Please specify one mode or more. / DreamBooth モードか fine tuning モードのどちらも指定されていません。1つ以上指定してください。"

    self.db_subset_schema = self.__merge_dict(
      self.SUBSET_ASCENDABLE_SCHEMA,
      self.DB_SUBSET_DISTINCT_SCHEMA,
      self.DB_SUBSET_ASCENDABLE_SCHEMA,
      self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
    )

    self.ft_subset_schema = self.__merge_dict(
      self.SUBSET_ASCENDABLE_SCHEMA,
      self.FT_SUBSET_DISTINCT_SCHEMA,
      self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
    )

    self.cn_subset_schema = self.__merge_dict(
      self.SUBSET_ASCENDABLE_SCHEMA,
      self.CN_SUBSET_DISTINCT_SCHEMA,
      self.CN_SUBSET_ASCENDABLE_SCHEMA,
      self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
    )

    self.db_dataset_schema = self.__merge_dict(
      self.DATASET_ASCENDABLE_SCHEMA,
      self.SUBSET_ASCENDABLE_SCHEMA,
      self.DB_SUBSET_ASCENDABLE_SCHEMA,
      self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
      {"subsets": [self.db_subset_schema]},
    )

    self.ft_dataset_schema = self.__merge_dict(
      self.DATASET_ASCENDABLE_SCHEMA,
      self.SUBSET_ASCENDABLE_SCHEMA,
      self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
      {"subsets": [self.ft_subset_schema]},
    )

    self.cn_dataset_schema = self.__merge_dict(
      self.DATASET_ASCENDABLE_SCHEMA,
      self.SUBSET_ASCENDABLE_SCHEMA,
      self.CN_SUBSET_ASCENDABLE_SCHEMA,
      self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
      {"subsets": [self.cn_subset_schema]},
    )

    if support_dreambooth and support_finetuning:
      def validate_flex_dataset(dataset_config: dict):
        subsets_config = dataset_config.get("subsets", [])

        if support_controlnet and all(["conditioning_data_dir" in subset for subset in subsets_config]):
          return Schema(self.cn_dataset_schema)(dataset_config)
        # check dataset meets FT style
        # NOTE: all FT subsets should have "metadata_file"
        elif all(["metadata_file" in subset for subset in subsets_config]):
          return Schema(self.ft_dataset_schema)(dataset_config)
        # check dataset meets DB style
        # NOTE: all DB subsets should have no "metadata_file"
        elif all(["metadata_file" not in subset for subset in subsets_config]):
          return Schema(self.db_dataset_schema)(dataset_config)
        else:
          raise voluptuous.Invalid("DreamBooth subset and fine tuning subset cannot be mixed in the same dataset. Please split them into separate datasets. / DreamBoothのサブセットとfine tuninのサブセットを同一のデータセットに混在させることはできません。別々のデータセットに分割してください。")

      self.dataset_schema = validate_flex_dataset
    elif support_dreambooth:
      self.dataset_schema = self.db_dataset_schema
    elif support_finetuning:
      self.dataset_schema = self.ft_dataset_schema
    elif support_controlnet:
      self.dataset_schema = self.cn_dataset_schema

    self.general_schema = self.__merge_dict(
      self.DATASET_ASCENDABLE_SCHEMA,
      self.SUBSET_ASCENDABLE_SCHEMA,
      self.DB_SUBSET_ASCENDABLE_SCHEMA if support_dreambooth else {},
      self.CN_SUBSET_ASCENDABLE_SCHEMA if support_controlnet else {},
      self.DO_SUBSET_ASCENDABLE_SCHEMA if support_dropout else {},
    )

    self.user_config_validator = Schema({
      "general": self.general_schema,
      "datasets": [self.dataset_schema],
    })

    self.argparse_schema = self.__merge_dict(
      self.general_schema,
      self.ARGPARSE_SPECIFIC_SCHEMA,
      {optname: Any(None, self.general_schema[optname]) for optname in self.ARGPARSE_NULLABLE_OPTNAMES},
      {a_name: self.general_schema[c_name] for a_name, c_name in self.ARGPARSE_OPTNAME_TO_CONFIG_OPTNAME.items()},
    )

    self.argparse_config_validator = Schema(Object(self.argparse_schema), extra=voluptuous.ALLOW_EXTRA)

  def sanitize_user_config(self, user_config: dict) -> dict:
    try:
      return self.user_config_validator(user_config)
    except MultipleInvalid:
      # TODO: エラー発生時のメッセージをわかりやすくする
      print("Invalid user config / ユーザ設定の形式が正しくないようです")
      raise

  # NOTE: In nature, argument parser result is not needed to be sanitize
  #   However this will help us to detect program bug
  def sanitize_argparse_namespace(self, argparse_namespace: argparse.Namespace) -> argparse.Namespace:
    try:
      return self.argparse_config_validator(argparse_namespace)
    except MultipleInvalid:
      # XXX: this should be a bug
      print("Invalid cmdline parsed arguments. This should be a bug. / コマンドラインのパース結果が正しくないようです。プログラムのバグの可能性が高いです。")
      raise

  # NOTE: value would be overwritten by latter dict if there is already the same key
  @staticmethod
  def __merge_dict(*dict_list: dict) -> dict:
    merged = {}
    for schema in dict_list:
      # merged |= schema
      for k, v in schema.items():
        merged[k] = v
    return merged


class BlueprintGenerator:
  BLUEPRINT_PARAM_NAME_TO_CONFIG_OPTNAME = {
  }

  def __init__(self, sanitizer: ConfigSanitizer):
    self.sanitizer = sanitizer

  # runtime_params is for parameters which is only configurable on runtime, such as tokenizer
  def generate(self, user_config: dict, argparse_namespace: argparse.Namespace, **runtime_params) -> Blueprint:
    sanitized_user_config = self.sanitizer.sanitize_user_config(user_config)
    sanitized_argparse_namespace = self.sanitizer.sanitize_argparse_namespace(argparse_namespace)

    # convert argparse namespace to dict like config
    # NOTE: it is ok to have extra entries in dict
    optname_map = self.sanitizer.ARGPARSE_OPTNAME_TO_CONFIG_OPTNAME
    argparse_config = {optname_map.get(optname, optname): value for optname, value in vars(sanitized_argparse_namespace).items()}

    general_config = sanitized_user_config.get("general", {})

    dataset_blueprints = []
    for dataset_config in sanitized_user_config.get("datasets", []):
      # NOTE: if subsets have no "metadata_file", these are DreamBooth datasets/subsets
      subsets = dataset_config.get("subsets", [])
      is_dreambooth = all(["metadata_file" not in subset for subset in subsets])
      is_controlnet = all(["conditioning_data_dir" in subset for subset in subsets])
      if is_controlnet:
        subset_params_klass = ControlNetSubsetParams
        dataset_params_klass = ControlNetDatasetParams
      elif is_dreambooth:
        subset_params_klass = DreamBoothSubsetParams
        dataset_params_klass = DreamBoothDatasetParams
      else:
        subset_params_klass = FineTuningSubsetParams
        dataset_params_klass = FineTuningDatasetParams

      subset_blueprints = []
      for subset_config in subsets:
        params = self.generate_params_by_fallbacks(subset_params_klass,
                                                   [subset_config, dataset_config, general_config, argparse_config, runtime_params])
        subset_blueprints.append(SubsetBlueprint(params))

      params = self.generate_params_by_fallbacks(dataset_params_klass,
                                                 [dataset_config, general_config, argparse_config, runtime_params])
      dataset_blueprints.append(DatasetBlueprint(is_dreambooth, is_controlnet, params, subset_blueprints))

    dataset_group_blueprint = DatasetGroupBlueprint(dataset_blueprints)

    return Blueprint(dataset_group_blueprint)

  @staticmethod
  def generate_params_by_fallbacks(param_klass, fallbacks: Sequence[dict]):
    name_map = BlueprintGenerator.BLUEPRINT_PARAM_NAME_TO_CONFIG_OPTNAME
    search_value = BlueprintGenerator.search_value
    default_params = asdict(param_klass())
    param_names = default_params.keys()

    params = {name: search_value(name_map.get(name, name), fallbacks, default_params.get(name)) for name in param_names}

    return param_klass(**params)

  @staticmethod
  def search_value(key: str, fallbacks: Sequence[dict], default_value = None):
    for cand in fallbacks:
      value = cand.get(key)
      if value is not None:
        return value

    return default_value


def generate_dataset_group_by_blueprint(dataset_group_blueprint: DatasetGroupBlueprint):
  datasets: List[Union[DreamBoothDataset, FineTuningDataset, ControlNetDataset]] = []

  for dataset_blueprint in dataset_group_blueprint.datasets:
    if dataset_blueprint.is_controlnet:
      subset_klass = ControlNetSubset
      dataset_klass = ControlNetDataset
    elif dataset_blueprint.is_dreambooth:
      subset_klass = DreamBoothSubset
      dataset_klass = DreamBoothDataset
    else:
      subset_klass = FineTuningSubset
      dataset_klass = FineTuningDataset

    subsets = [subset_klass(**asdict(subset_blueprint.params)) for subset_blueprint in dataset_blueprint.subsets]
    dataset = dataset_klass(subsets=subsets, **asdict(dataset_blueprint.params))
    datasets.append(dataset)

  # print info
  info = ""
  for i, dataset in enumerate(datasets):
    is_dreambooth = isinstance(dataset, DreamBoothDataset)
    is_controlnet = isinstance(dataset, ControlNetDataset)
    info += dedent(f"""\
      [Dataset {i}]
        batch_size: {dataset.batch_size}
        resolution: {(dataset.width, dataset.height)}
        enable_bucket: {dataset.enable_bucket}
    """)

    if dataset.enable_bucket:
      info += indent(dedent(f"""\
        min_bucket_reso: {dataset.min_bucket_reso}
        max_bucket_reso: {dataset.max_bucket_reso}
        bucket_reso_steps: {dataset.bucket_reso_steps}
        bucket_no_upscale: {dataset.bucket_no_upscale}
      \n"""), "  ")
    else:
      info += "\n"

    for j, subset in enumerate(dataset.subsets):
      info += indent(dedent(f"""\
        [Subset {j} of Dataset {i}]
          image_dir: "{subset.image_dir}"
          image_count: {subset.img_count}
          num_repeats: {subset.num_repeats}
          shuffle_caption: {subset.shuffle_caption}
          keep_tokens: {subset.keep_tokens}
          keep_tokens_separator: {subset.keep_tokens_separator}
          caption_dropout_rate: {subset.caption_dropout_rate}
          caption_dropout_every_n_epoches: {subset.caption_dropout_every_n_epochs}
          caption_tag_dropout_rate: {subset.caption_tag_dropout_rate}
          caption_prefix: {subset.caption_prefix}
          caption_suffix: {subset.caption_suffix}
          color_aug: {subset.color_aug}
          flip_aug: {subset.flip_aug}
          face_crop_aug_range: {subset.face_crop_aug_range}
          random_crop: {subset.random_crop}
          token_warmup_min: {subset.token_warmup_min},
          token_warmup_step: {subset.token_warmup_step},
      """), "  ")

      if is_dreambooth:
        info += indent(dedent(f"""\
          is_reg: {subset.is_reg}
          class_tokens: {subset.class_tokens}
          caption_extension: {subset.caption_extension}
        \n"""), "    ")
      elif not is_controlnet:
        info += indent(dedent(f"""\
          metadata_file: {subset.metadata_file}
        \n"""), "    ")

  print(info)

  # make buckets first because it determines the length of dataset
  # and set the same seed for all datasets
  seed = random.randint(0, 2**31) # actual seed is seed + epoch_no
  for i, dataset in enumerate(datasets):
    print(f"[Dataset {i}]")
    dataset.make_buckets()
    dataset.set_seed(seed)

  return DatasetGroup(datasets)


def generate_dreambooth_subsets_config_by_subdirs(train_data_dir: Optional[str] = None, reg_data_dir: Optional[str] = None):
  def extract_dreambooth_params(name: str) -> Tuple[int, str]:
    tokens = name.split('_')
    try:
      n_repeats = int(tokens[0])
    except ValueError as e:
      print(f"ignore directory without repeats / 繰り返し回数のないディレクトリを無視します: {name}")
      return 0, ""
    caption_by_folder = '_'.join(tokens[1:])
    return n_repeats, caption_by_folder

  def generate(base_dir: Optional[str], is_reg: bool):
    if base_dir is None:
      return []

    base_dir: Path = Path(base_dir)
    if not base_dir.is_dir():
      return []

    subsets_config = []
    for subdir in base_dir.iterdir():
      if not subdir.is_dir():
        continue

      num_repeats, class_tokens = extract_dreambooth_params(subdir.name)
      if num_repeats < 1:
        continue

      subset_config = {"image_dir": str(subdir), "num_repeats": num_repeats, "is_reg": is_reg, "class_tokens": class_tokens}
      subsets_config.append(subset_config)

    return subsets_config

  subsets_config = []
  subsets_config += generate(train_data_dir, False)
  subsets_config += generate(reg_data_dir, True)

  return subsets_config


def generate_controlnet_subsets_config_by_subdirs(train_data_dir: Optional[str] = None, conditioning_data_dir: Optional[str] = None, caption_extension: str = ".txt"):
  def generate(base_dir: Optional[str]):
    if base_dir is None:
      return []

    base_dir: Path = Path(base_dir)
    if not base_dir.is_dir():
      return []

    subsets_config = []
    subset_config = {"image_dir": train_data_dir, "conditioning_data_dir": conditioning_data_dir, "caption_extension": caption_extension, "num_repeats": 1}
    subsets_config.append(subset_config)

    return subsets_config

  subsets_config = []
  subsets_config += generate(train_data_dir)

  return subsets_config


def load_user_config(file: str) -> dict:
  file: Path = Path(file)
  if not file.is_file():
    raise ValueError(f"file not found / ファイルが見つかりません: {file}")

  if file.name.lower().endswith('.json'):
    try:
      with open(file, 'r') as f:
        config = json.load(f)
    except Exception:
      print(f"Error on parsing JSON config file. Please check the format. / JSON 形式の設定ファイルの読み込みに失敗しました。文法が正しいか確認してください。: {file}")
      raise
  elif file.name.lower().endswith('.toml'):
    try:
      config = toml.load(file)
    except Exception:
      print(f"Error on parsing TOML config file. Please check the format. / TOML 形式の設定ファイルの読み込みに失敗しました。文法が正しいか確認してください。: {file}")
      raise
  else:
    raise ValueError(f"not supported config file format / 対応していない設定ファイルの形式です: {file}")

  return config

# for config test
if __name__ == "__main__":
  parser = argparse.ArgumentParser()
  parser.add_argument("--support_dreambooth", action="store_true")
  parser.add_argument("--support_finetuning", action="store_true")
  parser.add_argument("--support_controlnet", action="store_true")
  parser.add_argument("--support_dropout", action="store_true")
  parser.add_argument("dataset_config")
  config_args, remain = parser.parse_known_args()

  parser = argparse.ArgumentParser()
  train_util.add_dataset_arguments(parser, config_args.support_dreambooth, config_args.support_finetuning, config_args.support_dropout)
  train_util.add_training_arguments(parser, config_args.support_dreambooth)
  argparse_namespace = parser.parse_args(remain)
  train_util.prepare_dataset_args(argparse_namespace, config_args.support_finetuning)

  print("[argparse_namespace]")
  print(vars(argparse_namespace))

  user_config = load_user_config(config_args.dataset_config)

  print("\n[user_config]")
  print(user_config)

  sanitizer = ConfigSanitizer(config_args.support_dreambooth, config_args.support_finetuning, config_args.support_controlnet, config_args.support_dropout)
  sanitized_user_config = sanitizer.sanitize_user_config(user_config)

  print("\n[sanitized_user_config]")
  print(sanitized_user_config)

  blueprint = BlueprintGenerator(sanitizer).generate(user_config, argparse_namespace)

  print("\n[blueprint]")
  print(blueprint)