|
from io import BytesIO |
|
|
|
import torch |
|
|
|
from internals.data.dataAccessor import update_db |
|
from internals.data.task import ModelType, Task, TaskType |
|
from internals.pipelines.inpainter import InPainter |
|
from internals.pipelines.object_remove import ObjectRemoval |
|
from internals.pipelines.prompt_modifier import PromptModifier |
|
from internals.pipelines.remove_background import RemoveBackground |
|
from internals.pipelines.safety_checker import SafetyChecker |
|
from internals.pipelines.upscaler import Upscaler |
|
from internals.util.avatar import Avatar |
|
from internals.util.cache import clear_cuda |
|
from internals.util.commons import (construct_default_s3_url, upload_image, |
|
upload_images) |
|
from internals.util.config import set_configs_from_task, set_root_dir |
|
from internals.util.failure_hander import FailureHandler |
|
from internals.util.slack import Slack |
|
|
|
torch.backends.cudnn.benchmark = True |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
num_return_sequences = 4 |
|
auto_mode = False |
|
|
|
slack = Slack() |
|
|
|
prompt_modifier = PromptModifier(num_of_sequences=num_return_sequences) |
|
upscaler = Upscaler() |
|
inpainter = InPainter() |
|
safety_checker = SafetyChecker() |
|
object_removal = ObjectRemoval() |
|
avatar = Avatar() |
|
|
|
|
|
@update_db |
|
@slack.auto_send_alert |
|
def remove_bg(task: Task): |
|
remove_background = RemoveBackground() |
|
output_image = remove_background.remove(task.get_imageUrl()) |
|
|
|
output_key = "crecoAI/{}_rmbg.png".format(task.get_taskId()) |
|
upload_image(output_image, output_key) |
|
|
|
return {"generated_image_url": construct_default_s3_url(output_key)} |
|
|
|
|
|
@update_db |
|
@slack.auto_send_alert |
|
def inpaint(task: Task): |
|
prompt = avatar.add_code_names(task.get_prompt()) |
|
if task.is_prompt_engineering(): |
|
prompt = prompt_modifier.modify(prompt) |
|
else: |
|
prompt = [prompt] * num_return_sequences |
|
|
|
print({"prompts": prompt}) |
|
|
|
images = inpainter.process( |
|
prompt=prompt, |
|
image_url=task.get_imageUrl(), |
|
mask_image_url=task.get_maskImageUrl(), |
|
width=task.get_width(), |
|
height=task.get_height(), |
|
seed=task.get_seed(), |
|
negative_prompt=[task.get_negative_prompt()] * num_return_sequences, |
|
) |
|
generated_image_urls = upload_images(images, "_inpaint", task.get_taskId()) |
|
|
|
clear_cuda() |
|
|
|
return {"modified_prompts": prompt, "generated_image_urls": generated_image_urls} |
|
|
|
|
|
@update_db |
|
@slack.auto_send_alert |
|
def remove_object(task: Task): |
|
output_key = "crecoAI/{}_object_remove.png".format(task.get_taskId()) |
|
|
|
images = object_removal.process( |
|
image_url=task.get_imageUrl(), |
|
mask_image_url=task.get_maskImageUrl(), |
|
seed=task.get_seed(), |
|
width=task.get_width(), |
|
height=task.get_height(), |
|
) |
|
generated_image_urls = upload_image(images[0], output_key) |
|
|
|
clear_cuda() |
|
|
|
return {"generated_image_urls": generated_image_urls} |
|
|
|
|
|
@update_db |
|
@slack.auto_send_alert |
|
def upscale_image(task: Task): |
|
output_key = "crecoAI/{}_upscale.png".format(task.get_taskId()) |
|
out_img = None |
|
if task.get_modelType() == ModelType.ANIME: |
|
print("Using Anime model") |
|
out_img = upscaler.upscale_anime( |
|
image=task.get_imageUrl(), resize_dimension=task.get_resize_dimension() |
|
) |
|
else: |
|
print("Using Real model") |
|
out_img = upscaler.upscale( |
|
image=task.get_imageUrl(), resize_dimension=task.get_resize_dimension() |
|
) |
|
|
|
upload_image(BytesIO(out_img), output_key) |
|
return {"generated_image_url": construct_default_s3_url(output_key)} |
|
|
|
|
|
def model_fn(model_dir): |
|
print("Logs: model loaded .... starts") |
|
|
|
set_root_dir(__file__) |
|
|
|
FailureHandler.register() |
|
|
|
avatar.load_local() |
|
|
|
prompt_modifier.load() |
|
safety_checker.load() |
|
|
|
object_removal.load(model_dir) |
|
upscaler.load() |
|
inpainter.load() |
|
|
|
safety_checker.apply(inpainter) |
|
|
|
print("Logs: model loaded ....") |
|
return |
|
|
|
|
|
@FailureHandler.clear |
|
def predict_fn(data, pipe): |
|
task = Task(data) |
|
print("task is ", data) |
|
|
|
FailureHandler.handle(task) |
|
|
|
|
|
set_configs_from_task(task) |
|
|
|
try: |
|
|
|
set_configs_from_task(task) |
|
|
|
|
|
avatar.fetch_from_network(task.get_model_id()) |
|
|
|
task_type = task.get_type() |
|
|
|
if task_type == TaskType.REMOVE_BG: |
|
return remove_bg(task) |
|
elif task_type == TaskType.INPAINT: |
|
return inpaint(task) |
|
elif task_type == TaskType.UPSCALE_IMAGE: |
|
return upscale_image(task) |
|
elif task_type == TaskType.OBJECT_REMOVAL: |
|
return remove_object(task) |
|
else: |
|
raise Exception("Invalid task type") |
|
except Exception as e: |
|
print(f"Error: {e}") |
|
slack.error_alert(task, e) |
|
return None |
|
|