File size: 4,822 Bytes
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from io import BytesIO

import torch

from internals.data.dataAccessor import update_db
from internals.data.task import ModelType, Task, TaskType
from internals.pipelines.inpainter import InPainter
from internals.pipelines.object_remove import ObjectRemoval
from internals.pipelines.prompt_modifier import PromptModifier
from internals.pipelines.remove_background import RemoveBackground
from internals.pipelines.safety_checker import SafetyChecker
from internals.pipelines.upscaler import Upscaler
from internals.util.avatar import Avatar
from internals.util.cache import clear_cuda
from internals.util.commons import (construct_default_s3_url, upload_image,
                                    upload_images)
from internals.util.config import set_configs_from_task, set_root_dir
from internals.util.failure_hander import FailureHandler
from internals.util.slack import Slack

torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True

num_return_sequences = 4
auto_mode = False

slack = Slack()

prompt_modifier = PromptModifier(num_of_sequences=num_return_sequences)
upscaler = Upscaler()
inpainter = InPainter()
safety_checker = SafetyChecker()
object_removal = ObjectRemoval()
avatar = Avatar()


@update_db
@slack.auto_send_alert
def remove_bg(task: Task):
    remove_background = RemoveBackground()
    output_image = remove_background.remove(task.get_imageUrl())

    output_key = "crecoAI/{}_rmbg.png".format(task.get_taskId())
    upload_image(output_image, output_key)

    return {"generated_image_url": construct_default_s3_url(output_key)}


@update_db
@slack.auto_send_alert
def inpaint(task: Task):
    prompt = avatar.add_code_names(task.get_prompt())
    if task.is_prompt_engineering():
        prompt = prompt_modifier.modify(prompt)
    else:
        prompt = [prompt] * num_return_sequences

    print({"prompts": prompt})

    images = inpainter.process(
        prompt=prompt,
        image_url=task.get_imageUrl(),
        mask_image_url=task.get_maskImageUrl(),
        width=task.get_width(),
        height=task.get_height(),
        seed=task.get_seed(),
        negative_prompt=[task.get_negative_prompt()] * num_return_sequences,
    )
    generated_image_urls = upload_images(images, "_inpaint", task.get_taskId())

    clear_cuda()

    return {"modified_prompts": prompt, "generated_image_urls": generated_image_urls}


@update_db
@slack.auto_send_alert
def remove_object(task: Task):
    output_key = "crecoAI/{}_object_remove.png".format(task.get_taskId())

    images = object_removal.process(
        image_url=task.get_imageUrl(),
        mask_image_url=task.get_maskImageUrl(),
        seed=task.get_seed(),
        width=task.get_width(),
        height=task.get_height(),
    )
    generated_image_urls = upload_image(images[0], output_key)

    clear_cuda()

    return {"generated_image_urls": generated_image_urls}


@update_db
@slack.auto_send_alert
def upscale_image(task: Task):
    output_key = "crecoAI/{}_upscale.png".format(task.get_taskId())
    out_img = None
    if task.get_modelType() == ModelType.ANIME:
        print("Using Anime model")
        out_img = upscaler.upscale_anime(
            image=task.get_imageUrl(), resize_dimension=task.get_resize_dimension()
        )
    else:
        print("Using Real model")
        out_img = upscaler.upscale(
            image=task.get_imageUrl(), resize_dimension=task.get_resize_dimension()
        )

    upload_image(BytesIO(out_img), output_key)
    return {"generated_image_url": construct_default_s3_url(output_key)}


def model_fn(model_dir):
    print("Logs: model loaded .... starts")

    set_root_dir(__file__)

    FailureHandler.register()

    avatar.load_local()

    prompt_modifier.load()
    safety_checker.load()

    object_removal.load(model_dir)
    upscaler.load()
    inpainter.load()

    safety_checker.apply(inpainter)

    print("Logs: model loaded ....")
    return


@FailureHandler.clear
def predict_fn(data, pipe):
    task = Task(data)
    print("task is ", data)

    FailureHandler.handle(task)

    # Set set_environment
    set_configs_from_task(task)

    try:
        # Set set_environment
        set_configs_from_task(task)

        # Fetch avatars
        avatar.fetch_from_network(task.get_model_id())

        task_type = task.get_type()

        if task_type == TaskType.REMOVE_BG:
            return remove_bg(task)
        elif task_type == TaskType.INPAINT:
            return inpaint(task)
        elif task_type == TaskType.UPSCALE_IMAGE:
            return upscale_image(task)
        elif task_type == TaskType.OBJECT_REMOVAL:
            return remove_object(task)
        else:
            raise Exception("Invalid task type")
    except Exception as e:
        print(f"Error: {e}")
        slack.error_alert(task, e)
        return None