Dare-k-7B-ties / README.md
AurelPx's picture
Update README.md
35851b8 verified
|
raw
history blame
1.65 kB
---
tags:
- merge
- mergekit
- lazymergekit
- samir-fama/SamirGPT-v1
- EmbeddedLLM/Mistral-7B-Merge-14-v0.2
base_model:
- samir-fama/SamirGPT-v1
- EmbeddedLLM/Mistral-7B-Merge-14-v0.2
license: apache-2.0
---
# Dare-k-7B-ties
Dare-k-7B-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [samir-fama/SamirGPT-v1](https://huggingface.co/samir-fama/SamirGPT-v1)
* [EmbeddedLLM/Mistral-7B-Merge-14-v0.2](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.2)
## 🧩 Configuration
```yaml
models:
- model: mistralai/Mistral-7B-v0.1
# No parameters necessary for base model
- model: samir-fama/SamirGPT-v1
parameters:
density: 0.53
weight: 0.5
- model: EmbeddedLLM/Mistral-7B-Merge-14-v0.2
parameters:
density: 0.53
weight: 0.5
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "AurelPx/Dare-k-7B-ties"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```