Augusto777's picture
End of training
c5386cd verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: BEiT-DMAE-13XDA-REVAL-80-32
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8478260869565217

BEiT-DMAE-13XDA-REVAL-80-32

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8105
  • Accuracy: 0.8478

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5474 1.0 60 1.2945 0.4565
1.3959 1.99 120 1.2745 0.4565
1.0517 2.99 180 0.9632 0.6087
0.7273 4.0 241 0.7709 0.6957
0.5246 5.0 301 0.7217 0.7391
0.3645 5.99 361 0.7142 0.8043
0.2211 6.99 421 0.6436 0.8043
0.266 8.0 482 1.1316 0.6087
0.1235 9.0 542 0.9257 0.7826
0.1613 9.99 602 0.8527 0.7826
0.0946 10.99 662 0.8274 0.8043
0.1392 12.0 723 0.8312 0.7609
0.1028 13.0 783 1.1959 0.7609
0.1072 13.99 843 1.0017 0.7391
0.0888 14.99 903 0.9214 0.8043
0.0951 16.0 964 0.9156 0.7609
0.0714 17.0 1024 1.3116 0.6957
0.0804 17.99 1084 1.1107 0.7826
0.08 18.99 1144 0.8105 0.8478
0.1619 20.0 1205 0.7581 0.8261
0.084 21.0 1265 1.0210 0.8261
0.072 21.99 1325 1.3092 0.7609
0.0303 22.99 1385 1.3367 0.7826
0.0228 24.0 1446 1.0277 0.8261
0.0755 25.0 1506 0.9436 0.8261
0.0756 25.99 1566 1.1588 0.7609
0.0875 26.99 1626 1.3280 0.7174
0.0771 28.0 1687 1.8558 0.6739
0.0467 29.0 1747 1.6476 0.7391
0.0382 29.99 1807 0.9374 0.8478
0.0511 30.99 1867 1.0847 0.8043
0.0161 32.0 1928 1.2028 0.7826
0.0301 33.0 1988 1.2971 0.7391
0.0443 33.99 2048 1.3993 0.7174
0.0782 34.99 2108 1.3359 0.8043
0.0287 36.0 2169 1.3011 0.7826
0.0347 37.0 2229 1.2450 0.7826
0.0538 37.99 2289 1.8216 0.7609
0.027 38.99 2349 1.1701 0.8043
0.038 40.0 2410 1.1025 0.8043
0.0244 41.0 2470 1.2912 0.7609
0.0122 41.99 2530 1.5699 0.7609
0.023 42.99 2590 1.5114 0.7826
0.0297 44.0 2651 1.2189 0.8478
0.0284 45.0 2711 1.3997 0.7826
0.0203 45.99 2771 1.4792 0.8043
0.03 46.99 2831 1.7487 0.7174
0.025 48.0 2892 1.6605 0.7609
0.0134 49.0 2952 1.4106 0.7826
0.026 49.99 3012 1.2972 0.7609
0.0507 50.99 3072 1.3303 0.7826
0.0394 52.0 3133 1.1954 0.8478
0.0271 53.0 3193 1.3125 0.8261
0.0115 53.99 3253 1.3444 0.8478
0.0138 54.99 3313 1.4689 0.8261
0.0184 56.0 3374 1.4959 0.8261
0.0163 57.0 3434 1.3490 0.7826
0.0112 57.99 3494 1.4749 0.7826
0.0185 58.99 3554 1.5823 0.7826
0.031 60.0 3615 1.5190 0.7826
0.0161 61.0 3675 1.5476 0.8043
0.0146 61.99 3735 1.3930 0.7826
0.005 62.99 3795 1.5454 0.8043
0.0093 64.0 3856 1.5959 0.7826
0.0224 65.0 3916 1.4554 0.8043
0.0154 65.99 3976 1.5327 0.8261
0.0116 66.99 4036 1.6030 0.8043
0.0037 68.0 4097 1.5046 0.8261
0.0023 69.0 4157 1.5222 0.8261
0.0068 69.99 4217 1.4339 0.8261
0.0342 70.99 4277 1.6964 0.8043
0.0077 72.0 4338 1.6102 0.8043
0.0043 73.0 4398 1.6687 0.8043
0.0131 73.99 4458 1.6847 0.8043
0.0031 74.99 4518 1.7195 0.8043
0.0087 76.0 4579 1.7209 0.7826
0.0219 77.0 4639 1.6715 0.8043
0.0229 77.99 4699 1.6823 0.8043
0.008 78.99 4759 1.6751 0.8043
0.0051 79.67 4800 1.6758 0.8043

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0