Products_NER8

This model is a fine-tuned version of dslim/bert-base-NER on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2028
  • Precision: 0.9227
  • Recall: 0.9267
  • F1: 0.9247
  • Accuracy: 0.9446

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1326 1.0 1235 0.1052 0.8887 0.9121 0.9003 0.9386
0.0959 2.0 2470 0.0927 0.8742 0.9085 0.8910 0.9417
0.0824 3.0 3705 0.0931 0.8970 0.9174 0.9070 0.9433
0.079 4.0 4940 0.0948 0.9067 0.9209 0.9137 0.9432
0.0762 5.0 6175 0.0962 0.8963 0.9179 0.9070 0.9437
0.0721 6.0 7410 0.1030 0.9095 0.9223 0.9159 0.9443
0.0683 7.0 8645 0.1070 0.9128 0.9233 0.9181 0.9439
0.0637 8.0 9880 0.1178 0.9157 0.9240 0.9199 0.9439
0.059 9.0 11115 0.1215 0.9176 0.9248 0.9212 0.9443
0.0527 10.0 12350 0.1367 0.9189 0.9247 0.9218 0.9438
0.0475 11.0 13585 0.1504 0.9199 0.9250 0.9224 0.9441
0.0431 12.0 14820 0.1484 0.9207 0.9259 0.9233 0.9446
0.0389 13.0 16055 0.1706 0.9224 0.9267 0.9246 0.9446
0.0368 14.0 17290 0.1847 0.9223 0.9265 0.9244 0.9445
0.0351 15.0 18525 0.2028 0.9227 0.9267 0.9247 0.9446

Framework versions

  • Transformers 4.33.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.1.0
  • Tokenizers 0.13.3
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Atheer174/Products_NER8

Finetuned
(15)
this model