Whisper Small PL
This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4444
- Wer: 14.4943
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1639 | 0.1 | 500 | 0.3290 | 16.6413 |
0.0674 | 1.1 | 1000 | 0.3224 | 15.1782 |
0.0335 | 2.09 | 1500 | 0.3186 | 14.5394 |
0.0161 | 3.09 | 2000 | 0.3445 | 15.0026 |
0.0101 | 4.08 | 2500 | 0.3777 | 14.5260 |
0.0064 | 5.08 | 3000 | 0.3977 | 14.6264 |
0.0036 | 6.08 | 3500 | 0.4621 | 14.6180 |
0.0025 | 7.07 | 4000 | 0.4639 | 14.5193 |
0.0017 | 8.07 | 4500 | 0.4971 | 14.4725 |
0.0017 | 9.07 | 5000 | 0.4444 | 14.4943 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.