|
--- |
|
language: |
|
- pl |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- transformers.js |
|
pipeline_tag: automatic-speech-recognition |
|
license: mit |
|
library_name: transformers |
|
--- |
|
|
|
# Polish Distil-Whisper: distil-large-v3 |
|
|
|
Distil-Whisper was proposed in the paper [Robust Knowledge Distillation via Large-Scale Pseudo Labelling](https://arxiv.org/abs/2311.00430). |
|
|
|
It is a distilled version of the Whisper model that is **3 times faster**, 49% smaller. This is the repository for distil-large-v3-pl, a distilled variant of [Whisper large-v3](https://huggingface.co/openai/whisper-large-v3). |
|
|
|
|
|
## Usage |
|
|
|
Distil-Whisper is supported in Hugging Face 🤗 Transformers from version 4.35 onwards. To run the model, first |
|
install the latest version of the Transformers library. For this example, we'll also install 🤗 Datasets to load toy |
|
audio dataset from the Hugging Face Hub: |
|
|
|
```bash |
|
pip install --upgrade pip |
|
pip install --upgrade transformers accelerate datasets[audio] |
|
``` |
|
|
|
### Short-Form Transcription |
|
|
|
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) |
|
class to transcribe short-form audio files (< 30-seconds) as follows: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
from datasets import load_dataset |
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
|
|
model_id = "Aspik101/distil-whisper-large-v3-pl" |
|
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True |
|
) |
|
model.to(device) |
|
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
max_new_tokens=128, |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
) |
|
|
|
dataset = load_dataset("mozilla-foundation/common_voice_13_0", "pl", split="test") |
|
sample = dataset[0]["audio"] |
|
|
|
result = pipe(sample) |
|
print(result["text"]) |
|
``` |
|
|
|
To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline: |
|
```diff |
|
- result = pipe(sample) |
|
+ result = pipe("audio.mp3") |
|
``` |
|
|
|
### Long-Form Transcription |
|
|
|
Distil-Whisper uses a chunked algorithm to transcribe long-form audio files (> 30-seconds). In practice, this chunked long-form algorithm |
|
is 9x faster than the sequential algorithm proposed by OpenAI in the Whisper paper (see Table 7 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)). |
|
|
|
To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For Distil-Whisper, a chunk length of 15-seconds |
|
is optimal. To activate batching, pass the argument `batch_size`: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
from datasets import load_dataset |
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
|
|
model_id = "Aspik101/distil-whisper-large-v3-pl" |
|
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True |
|
) |
|
model.to(device) |
|
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
max_new_tokens=128, |
|
chunk_length_s=15, |
|
batch_size=16, |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
) |
|
|
|
dataset = load_dataset("mozilla-foundation/common_voice_13_0", "pl", split="test") |
|
sample = dataset[0]["audio"] |
|
|
|
result = pipe(sample) |
|
print(result["text"]) |
|
``` |
|
|
|
<!--- |
|
**Tip:** The pipeline can also be used to transcribe an audio file from a remote URL, for example: |
|
|
|
```python |
|
result = pipe("https://huggingface.co/datasets/sanchit-gandhi/librispeech_long/resolve/main/audio.wav") |
|
``` |
|
---> |
|
|