qwen_lora
This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0622
- Mse: 0.0622
- Mae: 0.1968
- R Squared: 0.3060
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R Squared |
---|---|---|---|---|---|---|
0.0875 | 0.3115 | 100 | 0.0854 | 0.0854 | 0.2351 | 0.0471 |
0.0786 | 0.6231 | 200 | 0.0741 | 0.0741 | 0.2186 | 0.1735 |
0.0709 | 0.9346 | 300 | 0.0716 | 0.0716 | 0.2193 | 0.2018 |
0.0675 | 1.2461 | 400 | 0.0735 | 0.0735 | 0.2106 | 0.1803 |
0.0681 | 1.5576 | 500 | 0.0710 | 0.0710 | 0.2076 | 0.2081 |
0.0627 | 1.8692 | 600 | 0.0675 | 0.0675 | 0.2059 | 0.2468 |
0.0628 | 2.1807 | 700 | 0.0657 | 0.0657 | 0.2031 | 0.2677 |
0.0591 | 2.4922 | 800 | 0.0646 | 0.0646 | 0.2033 | 0.2799 |
0.06 | 2.8037 | 900 | 0.0660 | 0.0660 | 0.2007 | 0.2638 |
0.0553 | 3.1153 | 1000 | 0.0633 | 0.0633 | 0.2012 | 0.2944 |
0.0612 | 3.4268 | 1100 | 0.0654 | 0.0654 | 0.2078 | 0.2711 |
0.0542 | 3.7383 | 1200 | 0.0627 | 0.0627 | 0.1987 | 0.3009 |
0.0529 | 4.0498 | 1300 | 0.0623 | 0.0623 | 0.1970 | 0.3049 |
0.0546 | 4.3614 | 1400 | 0.0624 | 0.0624 | 0.1962 | 0.3044 |
0.0535 | 4.6729 | 1500 | 0.0623 | 0.0623 | 0.1972 | 0.3055 |
0.0536 | 4.9844 | 1600 | 0.0622 | 0.0622 | 0.1968 | 0.3060 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 165