train_dir / README.md
ArtiSikhwal's picture
ArtiSikhwal/headlight
3a76c0f verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: train_dir
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9084511507005643

train_dir

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2398
  • Accuracy: 0.9085

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9980 246 0.2860 0.8900
No log 2.0 493 0.2773 0.8893
0.2997 2.9980 739 0.2486 0.9049
0.2997 3.9919 984 0.2398 0.9085

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3