SentenceTransformer based on BAAI/bge-small-en
This is a sentence-transformers model finetuned from BAAI/bge-small-en. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the π€ Hub
model = SentenceTransformer("Areeb-02/bge-small-en-MultiplrRankingLoss-30-Rag-paper-dataset")
# Run inference
sentences = [
'Compare the top-5 retrieval accuracy of BM25 + MQ and SERM + BF for the NQ Dataset and HotpotQA.',
"For the NQ Dataset, SERM + BF has a top-5 retrieval accuracy of 88.22, which is significantly higher than BM25 + MQ's accuracy of 25.19. For HotpotQA, SERM + BF was not tested, but BM25 + MQ has a top-5 retrieval accuracy of 49.52.",
'The proof for Equation 5 progresses from Equation 20 to Equation 22 by applying the transformation motivated by Xie et al. [2021] and introducing the term p(R, x1:iβ1|z) to the equation.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0178 |
cosine_accuracy@3 | 0.0436 |
cosine_accuracy@5 | 0.0653 |
cosine_accuracy@10 | 0.1248 |
cosine_precision@1 | 0.0178 |
cosine_precision@3 | 0.0158 |
cosine_precision@5 | 0.016 |
cosine_precision@10 | 0.0158 |
cosine_recall@1 | 0.0 |
cosine_recall@3 | 0.0 |
cosine_recall@5 | 0.0001 |
cosine_recall@10 | 0.0002 |
cosine_ndcg@10 | 0.0163 |
cosine_mrr@10 | 0.0423 |
cosine_map@100 | 0.0019 |
dot_accuracy@1 | 0.0178 |
dot_accuracy@3 | 0.0436 |
dot_accuracy@5 | 0.0653 |
dot_accuracy@10 | 0.1248 |
dot_precision@1 | 0.0178 |
dot_precision@3 | 0.0158 |
dot_precision@5 | 0.016 |
dot_precision@10 | 0.0158 |
dot_recall@1 | 0.0 |
dot_recall@3 | 0.0 |
dot_recall@5 | 0.0001 |
dot_recall@10 | 0.0002 |
dot_ndcg@10 | 0.0163 |
dot_mrr@10 | 0.0423 |
dot_map@100 | 0.0019 |
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0198 |
cosine_accuracy@3 | 0.0406 |
cosine_accuracy@5 | 0.0653 |
cosine_accuracy@10 | 0.1267 |
cosine_precision@1 | 0.0198 |
cosine_precision@3 | 0.0149 |
cosine_precision@5 | 0.0149 |
cosine_precision@10 | 0.0168 |
cosine_recall@1 | 0.0 |
cosine_recall@3 | 0.0 |
cosine_recall@5 | 0.0001 |
cosine_recall@10 | 0.0002 |
cosine_ndcg@10 | 0.0168 |
cosine_mrr@10 | 0.0425 |
cosine_map@100 | 0.0021 |
dot_accuracy@1 | 0.0198 |
dot_accuracy@3 | 0.0406 |
dot_accuracy@5 | 0.0653 |
dot_accuracy@10 | 0.1267 |
dot_precision@1 | 0.0198 |
dot_precision@3 | 0.0149 |
dot_precision@5 | 0.0149 |
dot_precision@10 | 0.0168 |
dot_recall@1 | 0.0 |
dot_recall@3 | 0.0 |
dot_recall@5 | 0.0001 |
dot_recall@10 | 0.0002 |
dot_ndcg@10 | 0.0168 |
dot_mrr@10 | 0.0425 |
dot_map@100 | 0.0021 |
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0188 |
cosine_accuracy@3 | 0.0376 |
cosine_accuracy@5 | 0.0644 |
cosine_accuracy@10 | 0.1307 |
cosine_precision@1 | 0.0188 |
cosine_precision@3 | 0.0139 |
cosine_precision@5 | 0.0158 |
cosine_precision@10 | 0.0172 |
cosine_recall@1 | 0.0 |
cosine_recall@3 | 0.0 |
cosine_recall@5 | 0.0001 |
cosine_recall@10 | 0.0002 |
cosine_ndcg@10 | 0.017 |
cosine_mrr@10 | 0.0419 |
cosine_map@100 | 0.0023 |
dot_accuracy@1 | 0.0188 |
dot_accuracy@3 | 0.0376 |
dot_accuracy@5 | 0.0644 |
dot_accuracy@10 | 0.1307 |
dot_precision@1 | 0.0188 |
dot_precision@3 | 0.0139 |
dot_precision@5 | 0.0158 |
dot_precision@10 | 0.0172 |
dot_recall@1 | 0.0 |
dot_recall@3 | 0.0 |
dot_recall@5 | 0.0001 |
dot_recall@10 | 0.0002 |
dot_ndcg@10 | 0.017 |
dot_mrr@10 | 0.0419 |
dot_map@100 | 0.0023 |
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0188 |
cosine_accuracy@3 | 0.0366 |
cosine_accuracy@5 | 0.0644 |
cosine_accuracy@10 | 0.1307 |
cosine_precision@1 | 0.0188 |
cosine_precision@3 | 0.0135 |
cosine_precision@5 | 0.0156 |
cosine_precision@10 | 0.0172 |
cosine_recall@1 | 0.0 |
cosine_recall@3 | 0.0 |
cosine_recall@5 | 0.0001 |
cosine_recall@10 | 0.0002 |
cosine_ndcg@10 | 0.017 |
cosine_mrr@10 | 0.0418 |
cosine_map@100 | 0.0022 |
dot_accuracy@1 | 0.0188 |
dot_accuracy@3 | 0.0366 |
dot_accuracy@5 | 0.0644 |
dot_accuracy@10 | 0.1307 |
dot_precision@1 | 0.0188 |
dot_precision@3 | 0.0135 |
dot_precision@5 | 0.0156 |
dot_precision@10 | 0.0172 |
dot_recall@1 | 0.0 |
dot_recall@3 | 0.0 |
dot_recall@5 | 0.0001 |
dot_recall@10 | 0.0002 |
dot_ndcg@10 | 0.017 |
dot_mrr@10 | 0.0418 |
dot_map@100 | 0.0022 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,010 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 2 tokens
- mean: 21.28 tokens
- max: 59 tokens
- min: 2 tokens
- mean: 40.15 tokens
- max: 129 tokens
- Samples:
anchor positive What is the purpose of the MultiHop-RAG dataset and what does it consist of?
The MultiHop-RAG dataset is developed to benchmark Retrieval-Augmented Generation (RAG) for multi-hop queries. It consists of a knowledge base, a large collection of multi-hop queries, their ground-truth answers, and the associated supporting evidence. The dataset is built using an English news article dataset as the underlying RAG knowledge base.
Among Google, Apple, and Nvidia, which company reported the largest profit margins in their third-quarter reports for the fiscal year 2023?
Apple reported the largest profit margins in their third-quarter reports for the fiscal year 2023.
Under what circumstances should the LLM answer the questions?
The LLM should answer the questions based solely on the information provided in the paragraphs, and it should not use any other information.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 10warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | cosine_map@100 |
---|---|---|---|
0 | 0 | - | 0.0018 |
1.5625 | 100 | - | 0.0019 |
3.0 | 192 | - | 0.0020 |
1.5625 | 100 | - | 0.0021 |
3.125 | 200 | - | 0.0020 |
4.6875 | 300 | - | 0.0021 |
5.0 | 320 | - | 0.0020 |
1.5625 | 100 | - | 0.0020 |
3.125 | 200 | - | 0.0021 |
4.6875 | 300 | - | 0.0022 |
1.5625 | 100 | - | 0.0021 |
3.125 | 200 | - | 0.0019 |
4.6875 | 300 | - | 0.0022 |
6.25 | 400 | - | 0.0022 |
7.8125 | 500 | 0.0021 | 0.0022 |
9.375 | 600 | - | 0.0023 |
10.0 | 640 | - | 0.0022 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.3.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 27
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Areeb-02/bge-small-en-MultiplrRankingLoss-30-Rag-paper-dataset
Base model
BAAI/bge-small-enEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.018
- Cosine Accuracy@3 on Unknownself-reported0.044
- Cosine Accuracy@5 on Unknownself-reported0.065
- Cosine Accuracy@10 on Unknownself-reported0.125
- Cosine Precision@1 on Unknownself-reported0.018
- Cosine Precision@3 on Unknownself-reported0.016
- Cosine Precision@5 on Unknownself-reported0.016
- Cosine Precision@10 on Unknownself-reported0.016
- Cosine Recall@1 on Unknownself-reported0.000
- Cosine Recall@3 on Unknownself-reported0.000