Improved-Arabert-twitter-sentiment-No-dropout

This model is a fine-tuned version of aubmindlab/bert-base-arabertv2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5434
  • Accuracy: 0.9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5764 0.55 50 0.4925 0.79
0.3357 1.1 100 0.3094 0.88
0.2183 1.65 150 0.2971 0.87
0.2042 2.2 200 0.3013 0.89
0.1258 2.75 250 0.3038 0.9
0.1359 3.3 300 0.3114 0.89
0.0893 3.85 350 0.3108 0.91
0.0816 4.4 400 0.3569 0.9
0.071 4.95 450 0.3574 0.9
0.1043 5.49 500 0.4332 0.89
0.0407 6.04 550 0.4232 0.9
0.0378 6.59 600 0.4273 0.91
0.0341 7.14 650 0.4671 0.91
0.0226 7.69 700 0.5174 0.9
0.0215 8.24 750 0.4786 0.89
0.0329 8.79 800 0.4853 0.9
0.021 9.34 850 0.5430 0.9
0.0219 9.89 900 0.5510 0.89
0.0154 10.44 950 0.5518 0.9
0.0119 10.99 1000 0.5473 0.9
0.0108 11.54 1050 0.5285 0.9
0.0138 12.09 1100 0.5239 0.91
0.0133 12.64 1150 0.5584 0.89
0.0121 13.19 1200 0.5334 0.9
0.0063 13.74 1250 0.5325 0.91
0.0061 14.29 1300 0.5429 0.9
0.0105 14.84 1350 0.5434 0.9

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.7
  • Tokenizers 0.14.1
Downloads last month
30
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Anwaarma/Improved-Arabert-twitter-sentiment-No-dropout

Finetuned
(25)
this model