camembert_ccnet_classification_tools_NEFTune_fr_V2

This model is a fine-tuned version of camembert/camembert-base-ccnet on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5108
  • Accuracy: 0.9062
  • Learning Rate: 0.0001

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 24
  • eval_batch_size: 192
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy Rate
1.802 1.0 15 1.3063 0.7708 0.0001
0.9616 2.0 30 0.7143 0.8438 0.0001
0.4359 3.0 45 0.3769 0.9271 0.0001
0.2292 4.0 60 0.3546 0.9167 0.0001
0.1448 5.0 75 0.2678 0.9479 0.0001
0.095 6.0 90 0.4425 0.9062 9e-05
0.0762 7.0 105 0.3686 0.9062 0.0001
0.0817 8.0 120 0.4784 0.9062 0.0001
0.0506 9.0 135 0.4753 0.8958 0.0001
0.0245 10.0 150 0.3736 0.9167 0.0001
0.0347 11.0 165 0.5036 0.9062 0.0001
0.0141 12.0 180 0.4478 0.9167 8e-05
0.0196 13.0 195 0.4295 0.9167 0.0001
0.009 14.0 210 0.3942 0.9167 0.0001
0.0076 15.0 225 0.5108 0.9062 0.0001

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for AntoineD/camembert_ccnet_classification_tools_NEFTune_fr_V2

Finetuned
(13)
this model