language: fr
tags:
- coreference-resolution
- anaphora-resolution
- mentions-linking
- literary-texts
- camembert
- literary-texts
- nested-entities
- BookNLP-fr
license: apache-2.0
metrics:
- MUC
- B3
- CEAF
- CoNLL-F1
base_model:
- almanach/camembert-large
INTRODUCTION:
This model, developed as part of the BookNLP-fr project, is a coreference resolution model built on top of camembert-large embeddings. It is trained to link mentions of the same entity across a text, focusing on literary works in French.
This specific model has been trained to link entities of the following types: PER.
MODEL PERFORMANCES (LOOCV):
Overall Coreference Resolution Performances for non-overlapping windows of different length:
Window width (tokens) | Document count | Sample count | MUC F1 | B3 F1 | CEAFe F1 | CONLL F1 | |
---|---|---|---|---|---|---|---|
0 | 500 | 5 | 64 | 93.49% | 86.27% | 77.85% | 85.87% |
1 | 1,000 | 5 | 30 | 93.68% | 81.32% | 71.92% | 82.31% |
2 | 2,000 | 5 | 14 | 93.98% | 76.90% | 67.26% | 79.38% |
3 | 5,000 | 3 | 5 | 94.83% | 68.34% | 59.88% | 74.35% |
4 | 10,000 | 2 | 2 | 96.16% | 62.22% | 57.12% | 71.84% |
Coreference Resolution Performances on the fully annotated sample for each document:
Token count | Mention count | MUC F1 | B3 F1 | CEAFe F1 | CONLL F1 | |
---|---|---|---|---|---|---|
0 | 2,554 | 330 | 90.24% | 65.27% | 72.36% | 75.96% |
1 | 2,929 | 386 | 95.65% | 78.21% | 64.23% | 79.37% |
2 | 5,425 | 558 | 90.46% | 53.03% | 59.52% | 67.67% |
3 | 10,982 | 1,095 | 97.18% | 65.30% | 60.49% | 74.32% |
4 | 11,902 | 1,692 | 95.03% | 58.83% | 45.59% | 66.49% |
TRAINING PARAMETERS:
- Entities types: PER
- Split strategy: Leave-one-out cross-validation (29 files)
- Train/Validation split: 0.85 / 0.15
- Batch size: 16,000
- Initial learning rate: 0.0004
- Focal loss gamma: 1
- Focal loss alpha: 0.25
- Pronoun lookup antecedents: 30
- Common and Proper nouns lookup antecedents: 300
MODEL ARCHITECTURE:
Model Input: 2,165 dimensions vector
Concatenated maximum context camembert-large embeddings (2 * 1,024 = 2,048 dimensions)
Additional mentions features (106 dimensions):
- Length of mentions
- Position of the mention's start token within the sentence
- Grammatical category of the mentions (pronoun, common noun, proper noun)
- Dependency relation of the mention's head (one-hot encoded)
- Gender of the mentions (one-hot encoded)
- Number (singular/plural) of the mentions (one-hot encoded)
- Grammatical person of the mentions (one-hot encoded)
Additional mention pairs features (11 dimensions):
- Distance between mention IDs
- Distance between start tokens of mentions
- Distance between end tokens of mentions
- Distance between sentences containing mentions
- Distance between paragraphs containing mentions
- Difference in nesting levels of mentions
- Ratio of shared tokens between mentions
- Exact text match between mentions (binary)
- Exact match of mention heads (binary)
- Match of syntactic heads between mentions (binary)
- Match of entity types between mentions (binary)
Hidden Layers:
- Number of layers: 3
- Units per layer: 1,900 nodes
- Activation function: relu
- Dropout rate: 0.6
Final Layer:
- Type: Linear
- Input: 1900 dimensions
- Output: 1 dimension (mention pair coreference score)
Model Output: Continuous prediction between 0 (not coreferent) and 1 (coreferent) indicating the degree of confidence.
HOW TO USE:
*** IN CONSTRUCTION ***
TRAINING CORPUS:
Document | Tokens Count | Is included in model eval | |
---|---|---|---|
0 | 1836_Gautier-Theophile_La-morte-amoureuse | 14,299 tokens | False |
1 | 1840_Sand-George_Pauline | 12,315 tokens | False |
2 | 1842_Balzac-Honore-de_La-Maison-du-chat-qui-pelote | 24,776 tokens | False |
3 | 1844_Balzac-Honore-de_La-Maison-Nucingen | 30,987 tokens | False |
4 | 1844_Balzac-Honore-de_Sarrasine | 15,408 tokens | False |
5 | 1856_Cousin-Victor_Madame-de-Hautefort | 11,768 tokens | False |
6 | 1863_Gautier-Theophile_Le-capitaine-Fracasse | 11,834 tokens | False |
7 | 1873_Zola-Emile_Le-ventre-de-Paris | 12,557 tokens | False |
8 | 1881_Flaubert-Gustave_Bouvard-et-Pecuchet | 12,281 tokens | False |
9 | 1882_Guy-de-Maupassant_Mademoiselle-Fifi-1_1-MADEMOISELLE-FIFI | 5,425 tokens | True |
10 | 1882_Guy-de-Maupassant_Mademoiselle-Fifi-1_2-MADAME-BAPTISTE | 2,554 tokens | True |
11 | 1882_Guy-de-Maupassant_Mademoiselle-Fifi-1_3-LA-ROUILLE | 2,929 tokens | True |
12 | 1882_Guy-de-Maupassant_Mademoiselle-Fifi-2_1-MARROCA | 4,067 tokens | False |
13 | 1882_Guy-de-Maupassant_Mademoiselle-Fifi-2_2-LA-BUCHE | 2,251 tokens | False |
14 | 1882_Guy-de-Maupassant_Mademoiselle-Fifi-2_3-LA-RELIQUE | 2,034 tokens | False |
15 | 1882_Guy-de-Maupassant_Mademoiselle-Fifi-3_1-FOU | 1,864 tokens | False |
16 | 1882_Guy-de-Maupassant_Mademoiselle-Fifi-3_2-REVEIL | 2,141 tokens | False |
17 | 1882_Guy-de-Maupassant_Mademoiselle-Fifi-3_3-UNE-RUSE | 2,441 tokens | False |
18 | 1882_Guy-de-Maupassant_Mademoiselle-Fifi-3_4-A-CHEVAL | 2,860 tokens | False |
19 | 1882_Guy-de-Maupassant_Mademoiselle-Fifi-3_5-UN-REVEILLON | 2,343 tokens | False |
20 | 1901_Lucie-Achard_Rosalie-de-Constant-sa-famille-et-ses-amis | 12,703 tokens | False |
21 | 1903_Conan-Laure_Elisabeth_Seton | 13,023 tokens | False |
22 | 1904_Rolland-Romain_Jean-Christophe_Tome-I-L-aube | 10,982 tokens | True |
23 | 1904_Rolland-Romain_Jean-Christophe_Tome-II-Le-matin | 10,305 tokens | False |
24 | 1917_Adèle-Bourgeois_Némoville | 12,389 tokens | False |
25 | 1923_Radiguet-Raymond_Le-diable-au-corps | 14,637 tokens | False |
26 | 1926_Audoux-Marguerite_De-la-ville-au-moulin | 11,902 tokens | True |
27 | 1937_Audoux-Marguerite_Douce-Lumiere | 12,285 tokens | False |
28 | Manon_Lescaut_PEDRO | 71,219 tokens | False |
29 | TOTAL | 346,579 tokens | 5 files used for cross-validation |
CONTACT:
mail: antoine [dot] bourgois [at] protonmail [dot] com