TinyLlama-NoPE-1.1B / README.md
RmZeta's picture
Update README.md
19ca588 verified
|
raw
history blame
1.21 kB
metadata
license: mit

TinyLlama-NoPE-1.1B

NoPE is a transformer model without positional encoding.

The model is trained following TinyLlama code base (https://github.com/jzhang38/TinyLlama)

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.models.llama import modeling_llama


def nope_monkey_patch(q, k, cos, sin, position_ids, unsqueeze_dim=1):
    return q, k


modeling_llama.apply_rotary_pos_emb = nope_monkey_patch

model_path = "AntNLP/TinyLlama-NoPE-1.1B"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path).cuda()

input_ids = tokenizer("Hello, TinyLlama-NoPE", return_tensors="pt").input_ids.cuda()
output = model.generate(input_ids, do_sample=True, max_length=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))

Citation

@misc{wang2024length,
      title={Length Generalization of Causal Transformers without Position Encoding}, 
      author={Jie Wang and Tao Ji and Yuanbin Wu and Hang Yan and Tao Gui and Qi Zhang and Xuanjing Huang and Xiaoling Wang},
      year={2024},
      eprint={2404.12224},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}