Hubert-base-ASR-eu

This model is a fine-tuned version of facebook/hubert-base-ls960 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1922
  • Wer: 0.3154
  • Cer: 0.0583

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Cer
5.5577 0.1652 1000 3.5579 0.9999 0.9883
3.3467 0.3304 2000 2.9818 0.9999 0.9883
2.934 0.4955 3000 2.8354 0.9999 0.9883
2.8012 0.6607 4000 2.8179 0.9999 0.9883
2.7896 0.8259 5000 2.8299 0.9999 0.9883
1.4043 0.9911 6000 0.9904 0.9859 0.2788
0.903 1.1563 7000 0.5862 0.8110 0.1676
0.6955 1.3214 8000 0.4828 0.7192 0.1411
0.5764 1.4866 9000 0.4330 0.6535 0.1257
0.5195 1.6518 10000 0.3948 0.6083 0.1151
0.4949 1.8170 11000 0.3698 0.5676 0.1073
0.4481 1.9822 12000 0.3475 0.5343 0.1007
0.4251 2.1473 13000 0.3286 0.5162 0.0962
0.4257 2.3125 14000 0.3139 0.4933 0.0918
0.3982 2.4777 15000 0.3016 0.4780 0.0890
0.3672 2.6429 16000 0.2925 0.4616 0.0852
0.3741 2.8081 17000 0.2823 0.4504 0.0830
0.3991 2.9732 18000 0.2748 0.4372 0.0804
0.3624 3.1384 19000 0.2684 0.4293 0.0786
0.3362 3.3036 20000 0.2638 0.4180 0.0772
0.3209 3.4688 21000 0.2577 0.4072 0.0752
0.314 3.6340 22000 0.2498 0.4042 0.0744
0.3066 3.7991 23000 0.2452 0.3957 0.0730
0.3206 3.9643 24000 0.2466 0.3877 0.0717
0.3009 4.1295 25000 0.2396 0.3826 0.0708
0.3803 4.2947 26000 0.2391 0.3814 0.0705
0.2932 4.4599 27000 0.2334 0.3748 0.0692
0.2825 4.6250 28000 0.2292 0.3679 0.0679
0.2882 4.7902 29000 0.2253 0.3655 0.0675
0.2792 4.9554 30000 0.2233 0.3612 0.0667
0.2829 5.1206 31000 0.2224 0.3584 0.0664
0.2778 5.2858 32000 0.2221 0.3524 0.0652
0.2736 5.4509 33000 0.2160 0.3516 0.0647
0.2999 5.6161 34000 0.2156 0.3483 0.0646
0.2586 5.7813 35000 0.2149 0.3445 0.0634
0.2704 5.9465 36000 0.2132 0.3452 0.0635
0.2607 6.1117 37000 0.2112 0.3377 0.0626
0.2577 6.2768 38000 0.2074 0.3366 0.0620
0.2477 6.4420 39000 0.2064 0.3355 0.0617
0.2611 6.6072 40000 0.2062 0.3339 0.0615
0.2428 6.7724 41000 0.2044 0.3316 0.0611
0.246 6.9376 42000 0.2028 0.3314 0.0609
0.2664 7.1027 43000 0.2006 0.3295 0.0605
0.25 7.2679 44000 0.2027 0.3263 0.0601
0.2458 7.4331 45000 0.2009 0.3241 0.0599
0.2446 7.5983 46000 0.1995 0.3238 0.0598
0.2377 7.7635 47000 0.1997 0.3226 0.0594
0.2428 7.9286 48000 0.1981 0.3210 0.0592
0.2426 8.0938 49000 0.1964 0.3202 0.0591
0.253 8.2590 50000 0.1950 0.3191 0.0590
0.2635 8.4242 51000 0.1943 0.3191 0.0590
0.2789 8.5894 52000 0.1940 0.3175 0.0589
0.2608 8.7545 53000 0.1957 0.3173 0.0587
0.2231 8.9197 54000 0.1932 0.3167 0.0584
0.2406 9.0849 55000 0.1933 0.3164 0.0586
0.2347 9.2501 56000 0.1915 0.3161 0.0585
0.2502 9.4153 57000 0.1935 0.3153 0.0583
0.2353 9.5804 58000 0.1926 0.3154 0.0583
0.2358 9.7456 59000 0.1918 0.3156 0.0582
0.2395 9.9108 60000 0.1922 0.3154 0.0583

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
8
Safetensors
Model size
94.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Ansu/Hubert-base-ASR-eu

Finetuned
(82)
this model