layoutlmv2-base-uncased_finetuned_docvqa

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 4.6973

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
5.3322 0.22 50 4.6214
4.4006 0.44 100 4.1705
3.9967 0.66 150 3.8115
3.8349 0.88 200 3.5599
3.4185 1.11 250 3.2811
3.1129 1.33 300 3.3014
2.9186 1.55 350 3.2583
2.8937 1.77 400 2.6806
2.5872 1.99 450 2.4617
1.934 2.21 500 2.4098
1.9086 2.43 550 2.3926
1.7456 2.65 600 2.4048
1.6092 2.88 650 2.2064
1.5114 3.1 700 2.3882
1.3176 3.32 750 2.2211
1.2236 3.54 800 3.5792
1.4123 3.76 850 2.0391
1.2434 3.98 900 2.3563
0.8727 4.2 950 2.6344
0.9026 4.42 1000 3.1071
1.0698 4.65 1050 3.1795
0.9226 4.87 1100 3.0897
1.0639 5.09 1150 3.2822
0.7568 5.31 1200 3.0442
0.8192 5.53 1250 2.8516
0.5137 5.75 1300 3.1520
0.7053 5.97 1350 2.7512
0.4587 6.19 1400 2.8772
0.4965 6.42 1450 3.1186
0.4079 6.64 1500 3.0887
0.6135 6.86 1550 3.0537
0.7518 7.08 1600 3.2562
0.336 7.3 1650 3.3709
0.618 7.52 1700 2.5948
0.3473 7.74 1750 3.1784
0.3811 7.96 1800 3.3420
0.2749 8.19 1850 3.5958
0.2916 8.41 1900 3.7811
0.2634 8.63 1950 3.8935
0.4594 8.85 2000 3.4889
0.2957 9.07 2050 3.5717
0.1503 9.29 2100 3.8861
0.2986 9.51 2150 3.8007
0.3732 9.73 2200 3.5632
0.282 9.96 2250 3.1815
0.1781 10.18 2300 3.8386
0.1678 10.4 2350 3.9624
0.1813 10.62 2400 4.1113
0.3601 10.84 2450 3.9760
0.2374 11.06 2500 3.8321
0.1251 11.28 2550 4.0945
0.0741 11.5 2600 4.1810
0.2846 11.73 2650 3.9240
0.1964 11.95 2700 3.7833
0.1413 12.17 2750 3.9830
0.0696 12.39 2800 4.4270
0.1401 12.61 2850 4.6113
0.1267 12.83 2900 4.3713
0.0689 13.05 2950 4.4582
0.1636 13.27 3000 4.6710
0.1935 13.5 3050 4.2833
0.0936 13.72 3100 4.5357
0.1001 13.94 3150 4.2660
0.0509 14.16 3200 4.3863
0.0193 14.38 3250 4.5554
0.031 14.6 3300 4.4455
0.0163 14.82 3350 4.4985
0.1558 15.04 3400 4.5935
0.0707 15.27 3450 4.4791
0.0089 15.49 3500 4.6358
0.0881 15.71 3550 4.5644
0.1348 15.93 3600 4.5336
0.0176 16.15 3650 4.5465
0.0679 16.37 3700 4.4872
0.0138 16.59 3750 4.3819
0.0211 16.81 3800 4.5024
0.0506 17.04 3850 4.4761
0.0051 17.26 3900 4.5898
0.075 17.48 3950 4.5427
0.0089 17.7 4000 4.6244
0.0298 17.92 4050 4.6440
0.0034 18.14 4100 4.6486
0.0594 18.36 4150 4.6438
0.0179 18.58 4200 4.6552
0.0081 18.81 4250 4.6508
0.0046 19.03 4300 4.6808
0.0618 19.25 4350 4.6856
0.0033 19.47 4400 4.6763
0.0062 19.69 4450 4.6892
0.0404 19.91 4500 4.6973

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.10.0+cu113
  • Datasets 2.13.2
  • Tokenizers 0.13.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.