opus-mt-en-ro-finetuned-src-to-tgt

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ro on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4552

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 35 2.8624
No log 2.0 70 2.6600
No log 3.0 105 2.5610
No log 4.0 140 2.5369
No log 5.0 175 2.4976
No log 6.0 210 2.4731
No log 7.0 245 2.4463
No log 8.0 280 2.4558
No log 9.0 315 2.4386
No log 10.0 350 2.4377
No log 11.0 385 2.4342
No log 12.0 420 2.4332
No log 13.0 455 2.4401
No log 14.0 490 2.4453
2.3749 15.0 525 2.4237
2.3749 16.0 560 2.4336
2.3749 17.0 595 2.4262
2.3749 18.0 630 2.4340
2.3749 19.0 665 2.4358
2.3749 20.0 700 2.4423
2.3749 21.0 735 2.4370
2.3749 22.0 770 2.4404
2.3749 23.0 805 2.4451
2.3749 24.0 840 2.4482
2.3749 25.0 875 2.4477
2.3749 26.0 910 2.4503
2.3749 27.0 945 2.4533
2.3749 28.0 980 2.4570
2.1075 29.0 1015 2.4564
2.1075 30.0 1050 2.4552

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
4
Safetensors
Model size
74.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AnderZhu/opus-mt-en-ro-finetuned-src-to-tgt

Finetuned
(38)
this model