|
--- |
|
tags: autonlp |
|
language: unk |
|
widget: |
|
- text: "I love AutoNLP 🤗" |
|
datasets: |
|
- Anamika/autonlp-data-Feedback1 |
|
co2_eq_emissions: 123.88023112815048 |
|
--- |
|
|
|
# Model Trained Using AutoNLP |
|
|
|
- Problem type: Multi-class Classification |
|
- Model ID: 479512837 |
|
- CO2 Emissions (in grams): 123.88023112815048 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.6220805048942566 |
|
- Accuracy: 0.7961119332705503 |
|
- Macro F1: 0.7616345204219084 |
|
- Micro F1: 0.7961119332705503 |
|
- Weighted F1: 0.795387503907883 |
|
- Macro Precision: 0.782839455262034 |
|
- Micro Precision: 0.7961119332705503 |
|
- Weighted Precision: 0.7992606754484262 |
|
- Macro Recall: 0.7451485972167191 |
|
- Micro Recall: 0.7961119332705503 |
|
- Weighted Recall: 0.7961119332705503 |
|
|
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Anamika/autonlp-Feedback1-479512837 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("Anamika/autonlp-Feedback1-479512837", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Anamika/autonlp-Feedback1-479512837", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoNLP", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |