File size: 12,310 Bytes
c660edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Union

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

from functools import cached_property

""" Phi3Small model configuration """
logger = logging.get_logger(__name__)


def next_mult(x, y):
    return (x + y - 1) // y * y

class Phi3SmallConfig(PretrainedConfig):
    """
    This is the configuration class to store the configuration of a `Phi3Small` model. It is used to
    instantiate a Phi-3-small model according to the specified arguments, defining the model architecture. 
    Instantiating a configuration with the defaults will yield a similar configuration to that of the Phi-3-small
    [phi3](https://arxiv.org/pdf/2404.14219) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 100352):
            Vocabulary size of the Phi3Small model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling `Phi3Small`.
        max_position_embeddings (`int`, *optional*, defaults to 8192):
            The maximum sequence length that this model might safely be used with.
        rope_embedding_base (`float`, *optional*, defaults to 10^6):
            The base value for the RoPE (Relative Position Encoding) embedding.
        rope_position_scale (`float`, *optional*, defaults to 1.0):
            The scale factor for the RoPE position encoding.
        rope_scaling (`Optional[Dict[str, Union[float, List[float], int]]]`, *optional*, defaults to None):
            The scaling configuration used for LongRoPE.
        hidden_size (`int`, *optional*, defaults to 4096):
            The size of the hidden layers in the model.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            The number of layers in the model.
        num_attention_heads (`int`, *optional*, defaults to 32):
            The number of query heads in the model.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            The number of key-value heads in the model.
        hidden_act (`str`, *optional*, defaults to "gegelu"):
            The activation function used in the model.
        gegelu_limit (`float`, *optional*, defaults to 20.0):
            The limit value for the GELU activation function (for numerical stability).
        gegelu_pad_to_256 (`bool`, *optional*, defaults to True):
            Whether to pad the intermediate size to a multiple of 256 (for faster matmul ops).
        ff_dim_multiplier (`Optional[int]`, *optional*, defaults to None):
            The dimension multiplier for the feed-forward layers.
        ff_intermediate_size (`Optional[int]`, *optional*, defaults to 14336):
            The intermediate size for the feed-forward layers.
            One of `ff_dim_multiplier` or `ff_intermediate_size` must be specified.
        blocksparse_homo_head_pattern (`bool`, *optional*, defaults to False):
            Whether to use a homogeneous head pattern for block-sparse attention.
        blocksparse_block_size (`int`, *optional*, defaults to 64):
            The block size for block-sparse attention.
        blocksparse_num_local_blocks (`int`, *optional*, defaults to 16):
            The number of local blocks for block-sparse attention.
            The local window used in blocksparse equals `blocksparse_num_local_blocks * blocksparse_block_size`
        blocksparse_vert_stride (`int`, *optional*, defaults to 8):
            The vertical stride for block-sparse attention.
        blocksparse_triton_kernel_block_size (`int`, *optional*, defaults to 64):
            The kernel block size for block-sparse attention.
        dense_attention_every_n_layers (`Optional[int]`, *optional*, defaults to 2):
            The frequency of all dense attention layers in the model
        embedding_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for the embedding layer.
        attention_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for the attention layers.
        ffn_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for the feed-forward layers.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
            The epsilon value for layer normalization.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The range for weight initialization.
        mup_use_scaling (`bool`, *optional*, defaults to True):
            Whether to use scaling for MuP parameters (see: https://arxiv.org/abs/2203.03466).
        mup_width_multiplier (`bool`, *optional*, defaults to 8.0):
            The width multiplier for MuP.
        mup_embedding_multiplier (`bool`, *optional*, defaults to 10.0):
            The embedding multiplier for MuP.
        mup_attn_multiplier (`bool`, *optional*, defaults to 1.0):
            The attention multiplier for MuP.
        use_cache (`bool`, *optional*, defaults to True):
            Whether to use cache for the model.
        bos_token_id (`int`, *optional*, defaults to 100257):
            The token ID for the beginning of sentence.
        eos_token_id (`int`, *optional*, defaults to 100257):
            The token ID for the end of sentence.
        reorder_and_upcast_attn (`bool`, *optional*, defaults to False):
            Whether to reorder and upcast attention.
        pad_sequence_to_multiple_of_64 (`bool`, *optional*, defaults to True):
            Whether to pad the sequence length to a multiple of 64.
        **kwargs:
            Additional keyword arguments.

    Example:

    ```python
    >>> from transformers import Phi3SmallConfig, Phi3SmallModel

    >>> # Initializing a Phi3Small configuration
    >>> configuration = Phi3SmallConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = Phi3SmallModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    """

    model_type = "phi3small"
    keys_to_ignore_at_inference = ["past_key_values"]
    

    def __init__(
        self,
        # General information about the model
        vocab_size: int =100352,
        max_position_embeddings: int = 8192,
        # RoPE Related Parameters
        rope_embedding_base: float = 10**6,
        rope_position_scale: float = 1.0,
        rope_scaling: Optional[Dict[str, Union[float, List[float], int]]] = None,
        # General Model Parameters
        hidden_size: int = 4096,
        num_hidden_layers: int = 32,
        # KV Shared Attention Configurations
        num_attention_heads: int = 32,
        num_key_value_heads: int = 8,
        # GEGELU Related Parameters
        hidden_act: str = "gegelu",
        gegelu_limit: float = 20.0,
        gegelu_pad_to_256: bool = True,
        ff_dim_multiplier: Optional[int] = None,
        ff_intermediate_size: Optional[int] = 14336,
        # Block Sparse Attention Parameters
        blocksparse_homo_head_pattern: bool = False,
        blocksparse_block_size: int = 64,
        blocksparse_num_local_blocks: int = 16,
        blocksparse_vert_stride: int = 8,
        blocksparse_triton_kernel_block_size: int = 64,
        # Frequency of block-sparsity
        dense_attention_every_n_layers: Optional[int] = 2,
        # Reegularization parameters
        embedding_dropout_prob: float =0.1,
        attention_dropout_prob: float = 0.0,
        ffn_dropout_prob: float = 0.1,
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
        # MuP parameters
        mup_use_scaling: bool = True,
        mup_width_multiplier: bool = 8.0,
        mup_embedding_multiplier: bool = 10.0,
        mup_attn_multiplier: bool =1.0,
        use_cache=True,
        # The model does not have a bos token id
        # However, in order for some of the downstream libraries to not break
        # we set this to be the same as the eos_token_id
        bos_token_id: int = 100257,
        eos_token_id: int = 100257,
        reorder_and_upcast_attn=False,
        # Configuration to pad sequence length to a multiple of 64
        pad_sequence_to_multiple_of_64: bool = True,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.rope_embedding_base = rope_embedding_base
        self.rope_position_scale = rope_position_scale
        self.rope_scaling = rope_scaling
        self.hidden_size = hidden_size
        # QK Shared Attention
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        # Block Sparse Attention Pattern
        self.blocksparse_homo_head_pattern = blocksparse_homo_head_pattern
        self.blocksparse_block_size = blocksparse_block_size
        self.blocksparse_num_local_blocks = blocksparse_num_local_blocks
        self.blocksparse_vert_stride = blocksparse_vert_stride
        self.blocksparse_triton_kernel_block_size = blocksparse_triton_kernel_block_size
        # Frequency of block sparsity
        self.dense_attention_every_n_layers = dense_attention_every_n_layers
        # Activation function
        self.hidden_act = hidden_act
        self.gegelu_limit = gegelu_limit
        self.gegelu_pad_to_256 = gegelu_pad_to_256
        self.ff_dim_multiplier = ff_dim_multiplier
        self.ff_intermediate_size = ff_intermediate_size
        if self.ff_dim_multiplier is None and self.ff_intermediate_size is None:
            raise ValueError(f"Cannot have both {self.ff_dim_multiplier} and {self.ff_intermediate_size} as None")
        if self.ff_dim_multiplier is not None and self.ff_intermediate_size is not None:
            raise ValueError(f"Cannot specify both {self.ff_dim_multiplier} and {self.ff_intermediate_size}.")
        # General regularization
        self.embedding_dropout_prob = embedding_dropout_prob
        self.attention_dropout_prob = attention_dropout_prob
        self.ffn_dropout_prob = ffn_dropout_prob
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range
        # MuP parameters
        self.mup_use_scaling = mup_use_scaling
        self.mup_width_multiplier = mup_width_multiplier
        self.mup_embedding_multiplier = mup_embedding_multiplier
        self.mup_attn_multiplier = mup_attn_multiplier
        self.use_cache = use_cache

        self.reorder_and_upcast_attn = reorder_and_upcast_attn
        self.pad_sequence_to_multiple_of_64 = pad_sequence_to_multiple_of_64

        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id

        super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)

    @cached_property
    def dummy_token_indices(self) -> List[int]:
        # Importing here to avoid circular imports
        from .tokenization_phi3_small import Phi3SmallTokenizer
        tokenizer = Phi3SmallTokenizer()
        return tokenizer.dummy_token_indices

    @property
    def intermediate_size(self) -> int:
        if self.ff_intermediate_size is not None:
            return self.ff_intermediate_size
        intermediate_size = (self.ff_dim_multiplier) * (self.hidden_size // 3) * 2
        if self.gegelu_pad_to_256:
            intermediate_size = next_mult(intermediate_size, 256)
        return intermediate_size