File size: 12,310 Bytes
c660edb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Union
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from functools import cached_property
""" Phi3Small model configuration """
logger = logging.get_logger(__name__)
def next_mult(x, y):
return (x + y - 1) // y * y
class Phi3SmallConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a `Phi3Small` model. It is used to
instantiate a Phi-3-small model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Phi-3-small
[phi3](https://arxiv.org/pdf/2404.14219) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 100352):
Vocabulary size of the Phi3Small model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling `Phi3Small`.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might safely be used with.
rope_embedding_base (`float`, *optional*, defaults to 10^6):
The base value for the RoPE (Relative Position Encoding) embedding.
rope_position_scale (`float`, *optional*, defaults to 1.0):
The scale factor for the RoPE position encoding.
rope_scaling (`Optional[Dict[str, Union[float, List[float], int]]]`, *optional*, defaults to None):
The scaling configuration used for LongRoPE.
hidden_size (`int`, *optional*, defaults to 4096):
The size of the hidden layers in the model.
num_hidden_layers (`int`, *optional*, defaults to 32):
The number of layers in the model.
num_attention_heads (`int`, *optional*, defaults to 32):
The number of query heads in the model.
num_key_value_heads (`int`, *optional*, defaults to 8):
The number of key-value heads in the model.
hidden_act (`str`, *optional*, defaults to "gegelu"):
The activation function used in the model.
gegelu_limit (`float`, *optional*, defaults to 20.0):
The limit value for the GELU activation function (for numerical stability).
gegelu_pad_to_256 (`bool`, *optional*, defaults to True):
Whether to pad the intermediate size to a multiple of 256 (for faster matmul ops).
ff_dim_multiplier (`Optional[int]`, *optional*, defaults to None):
The dimension multiplier for the feed-forward layers.
ff_intermediate_size (`Optional[int]`, *optional*, defaults to 14336):
The intermediate size for the feed-forward layers.
One of `ff_dim_multiplier` or `ff_intermediate_size` must be specified.
blocksparse_homo_head_pattern (`bool`, *optional*, defaults to False):
Whether to use a homogeneous head pattern for block-sparse attention.
blocksparse_block_size (`int`, *optional*, defaults to 64):
The block size for block-sparse attention.
blocksparse_num_local_blocks (`int`, *optional*, defaults to 16):
The number of local blocks for block-sparse attention.
The local window used in blocksparse equals `blocksparse_num_local_blocks * blocksparse_block_size`
blocksparse_vert_stride (`int`, *optional*, defaults to 8):
The vertical stride for block-sparse attention.
blocksparse_triton_kernel_block_size (`int`, *optional*, defaults to 64):
The kernel block size for block-sparse attention.
dense_attention_every_n_layers (`Optional[int]`, *optional*, defaults to 2):
The frequency of all dense attention layers in the model
embedding_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for the embedding layer.
attention_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for the attention layers.
ffn_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for the feed-forward layers.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon value for layer normalization.
initializer_range (`float`, *optional*, defaults to 0.02):
The range for weight initialization.
mup_use_scaling (`bool`, *optional*, defaults to True):
Whether to use scaling for MuP parameters (see: https://arxiv.org/abs/2203.03466).
mup_width_multiplier (`bool`, *optional*, defaults to 8.0):
The width multiplier for MuP.
mup_embedding_multiplier (`bool`, *optional*, defaults to 10.0):
The embedding multiplier for MuP.
mup_attn_multiplier (`bool`, *optional*, defaults to 1.0):
The attention multiplier for MuP.
use_cache (`bool`, *optional*, defaults to True):
Whether to use cache for the model.
bos_token_id (`int`, *optional*, defaults to 100257):
The token ID for the beginning of sentence.
eos_token_id (`int`, *optional*, defaults to 100257):
The token ID for the end of sentence.
reorder_and_upcast_attn (`bool`, *optional*, defaults to False):
Whether to reorder and upcast attention.
pad_sequence_to_multiple_of_64 (`bool`, *optional*, defaults to True):
Whether to pad the sequence length to a multiple of 64.
**kwargs:
Additional keyword arguments.
Example:
```python
>>> from transformers import Phi3SmallConfig, Phi3SmallModel
>>> # Initializing a Phi3Small configuration
>>> configuration = Phi3SmallConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = Phi3SmallModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "phi3small"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
# General information about the model
vocab_size: int =100352,
max_position_embeddings: int = 8192,
# RoPE Related Parameters
rope_embedding_base: float = 10**6,
rope_position_scale: float = 1.0,
rope_scaling: Optional[Dict[str, Union[float, List[float], int]]] = None,
# General Model Parameters
hidden_size: int = 4096,
num_hidden_layers: int = 32,
# KV Shared Attention Configurations
num_attention_heads: int = 32,
num_key_value_heads: int = 8,
# GEGELU Related Parameters
hidden_act: str = "gegelu",
gegelu_limit: float = 20.0,
gegelu_pad_to_256: bool = True,
ff_dim_multiplier: Optional[int] = None,
ff_intermediate_size: Optional[int] = 14336,
# Block Sparse Attention Parameters
blocksparse_homo_head_pattern: bool = False,
blocksparse_block_size: int = 64,
blocksparse_num_local_blocks: int = 16,
blocksparse_vert_stride: int = 8,
blocksparse_triton_kernel_block_size: int = 64,
# Frequency of block-sparsity
dense_attention_every_n_layers: Optional[int] = 2,
# Reegularization parameters
embedding_dropout_prob: float =0.1,
attention_dropout_prob: float = 0.0,
ffn_dropout_prob: float = 0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
# MuP parameters
mup_use_scaling: bool = True,
mup_width_multiplier: bool = 8.0,
mup_embedding_multiplier: bool = 10.0,
mup_attn_multiplier: bool =1.0,
use_cache=True,
# The model does not have a bos token id
# However, in order for some of the downstream libraries to not break
# we set this to be the same as the eos_token_id
bos_token_id: int = 100257,
eos_token_id: int = 100257,
reorder_and_upcast_attn=False,
# Configuration to pad sequence length to a multiple of 64
pad_sequence_to_multiple_of_64: bool = True,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.rope_embedding_base = rope_embedding_base
self.rope_position_scale = rope_position_scale
self.rope_scaling = rope_scaling
self.hidden_size = hidden_size
# QK Shared Attention
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
# Block Sparse Attention Pattern
self.blocksparse_homo_head_pattern = blocksparse_homo_head_pattern
self.blocksparse_block_size = blocksparse_block_size
self.blocksparse_num_local_blocks = blocksparse_num_local_blocks
self.blocksparse_vert_stride = blocksparse_vert_stride
self.blocksparse_triton_kernel_block_size = blocksparse_triton_kernel_block_size
# Frequency of block sparsity
self.dense_attention_every_n_layers = dense_attention_every_n_layers
# Activation function
self.hidden_act = hidden_act
self.gegelu_limit = gegelu_limit
self.gegelu_pad_to_256 = gegelu_pad_to_256
self.ff_dim_multiplier = ff_dim_multiplier
self.ff_intermediate_size = ff_intermediate_size
if self.ff_dim_multiplier is None and self.ff_intermediate_size is None:
raise ValueError(f"Cannot have both {self.ff_dim_multiplier} and {self.ff_intermediate_size} as None")
if self.ff_dim_multiplier is not None and self.ff_intermediate_size is not None:
raise ValueError(f"Cannot specify both {self.ff_dim_multiplier} and {self.ff_intermediate_size}.")
# General regularization
self.embedding_dropout_prob = embedding_dropout_prob
self.attention_dropout_prob = attention_dropout_prob
self.ffn_dropout_prob = ffn_dropout_prob
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
# MuP parameters
self.mup_use_scaling = mup_use_scaling
self.mup_width_multiplier = mup_width_multiplier
self.mup_embedding_multiplier = mup_embedding_multiplier
self.mup_attn_multiplier = mup_attn_multiplier
self.use_cache = use_cache
self.reorder_and_upcast_attn = reorder_and_upcast_attn
self.pad_sequence_to_multiple_of_64 = pad_sequence_to_multiple_of_64
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
@cached_property
def dummy_token_indices(self) -> List[int]:
# Importing here to avoid circular imports
from .tokenization_phi3_small import Phi3SmallTokenizer
tokenizer = Phi3SmallTokenizer()
return tokenizer.dummy_token_indices
@property
def intermediate_size(self) -> int:
if self.ff_intermediate_size is not None:
return self.ff_intermediate_size
intermediate_size = (self.ff_dim_multiplier) * (self.hidden_size // 3) * 2
if self.gegelu_pad_to_256:
intermediate_size = next_mult(intermediate_size, 256)
return intermediate_size
|