AmberYifan
commited on
Commit
•
c660edb
1
Parent(s):
38a779f
Upload 6 files
Browse files- configuration_phi3_small.py +250 -0
- modeling_phi3_small.py +1140 -0
- positional_embedding.py +288 -0
- tokenization_phi3_small.py +313 -0
- triton_blocksparse_attention_layer.py +176 -0
- triton_flash_blocksparse_attn.py +1943 -0
configuration_phi3_small.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
from typing import Any, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
from functools import cached_property
|
22 |
+
|
23 |
+
""" Phi3Small model configuration """
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
def next_mult(x, y):
|
28 |
+
return (x + y - 1) // y * y
|
29 |
+
|
30 |
+
class Phi3SmallConfig(PretrainedConfig):
|
31 |
+
"""
|
32 |
+
This is the configuration class to store the configuration of a `Phi3Small` model. It is used to
|
33 |
+
instantiate a Phi-3-small model according to the specified arguments, defining the model architecture.
|
34 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the Phi-3-small
|
35 |
+
[phi3](https://arxiv.org/pdf/2404.14219) architecture.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 100352):
|
43 |
+
Vocabulary size of the Phi3Small model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling `Phi3Small`.
|
45 |
+
max_position_embeddings (`int`, *optional*, defaults to 8192):
|
46 |
+
The maximum sequence length that this model might safely be used with.
|
47 |
+
rope_embedding_base (`float`, *optional*, defaults to 10^6):
|
48 |
+
The base value for the RoPE (Relative Position Encoding) embedding.
|
49 |
+
rope_position_scale (`float`, *optional*, defaults to 1.0):
|
50 |
+
The scale factor for the RoPE position encoding.
|
51 |
+
rope_scaling (`Optional[Dict[str, Union[float, List[float], int]]]`, *optional*, defaults to None):
|
52 |
+
The scaling configuration used for LongRoPE.
|
53 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
54 |
+
The size of the hidden layers in the model.
|
55 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
56 |
+
The number of layers in the model.
|
57 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
58 |
+
The number of query heads in the model.
|
59 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
60 |
+
The number of key-value heads in the model.
|
61 |
+
hidden_act (`str`, *optional*, defaults to "gegelu"):
|
62 |
+
The activation function used in the model.
|
63 |
+
gegelu_limit (`float`, *optional*, defaults to 20.0):
|
64 |
+
The limit value for the GELU activation function (for numerical stability).
|
65 |
+
gegelu_pad_to_256 (`bool`, *optional*, defaults to True):
|
66 |
+
Whether to pad the intermediate size to a multiple of 256 (for faster matmul ops).
|
67 |
+
ff_dim_multiplier (`Optional[int]`, *optional*, defaults to None):
|
68 |
+
The dimension multiplier for the feed-forward layers.
|
69 |
+
ff_intermediate_size (`Optional[int]`, *optional*, defaults to 14336):
|
70 |
+
The intermediate size for the feed-forward layers.
|
71 |
+
One of `ff_dim_multiplier` or `ff_intermediate_size` must be specified.
|
72 |
+
blocksparse_homo_head_pattern (`bool`, *optional*, defaults to False):
|
73 |
+
Whether to use a homogeneous head pattern for block-sparse attention.
|
74 |
+
blocksparse_block_size (`int`, *optional*, defaults to 64):
|
75 |
+
The block size for block-sparse attention.
|
76 |
+
blocksparse_num_local_blocks (`int`, *optional*, defaults to 16):
|
77 |
+
The number of local blocks for block-sparse attention.
|
78 |
+
The local window used in blocksparse equals `blocksparse_num_local_blocks * blocksparse_block_size`
|
79 |
+
blocksparse_vert_stride (`int`, *optional*, defaults to 8):
|
80 |
+
The vertical stride for block-sparse attention.
|
81 |
+
blocksparse_triton_kernel_block_size (`int`, *optional*, defaults to 64):
|
82 |
+
The kernel block size for block-sparse attention.
|
83 |
+
dense_attention_every_n_layers (`Optional[int]`, *optional*, defaults to 2):
|
84 |
+
The frequency of all dense attention layers in the model
|
85 |
+
embedding_dropout_prob (`float`, *optional*, defaults to 0.1):
|
86 |
+
The dropout probability for the embedding layer.
|
87 |
+
attention_dropout_prob (`float`, *optional*, defaults to 0.0):
|
88 |
+
The dropout probability for the attention layers.
|
89 |
+
ffn_dropout_prob (`float`, *optional*, defaults to 0.1):
|
90 |
+
The dropout probability for the feed-forward layers.
|
91 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
92 |
+
The epsilon value for layer normalization.
|
93 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
94 |
+
The range for weight initialization.
|
95 |
+
mup_use_scaling (`bool`, *optional*, defaults to True):
|
96 |
+
Whether to use scaling for MuP parameters (see: https://arxiv.org/abs/2203.03466).
|
97 |
+
mup_width_multiplier (`bool`, *optional*, defaults to 8.0):
|
98 |
+
The width multiplier for MuP.
|
99 |
+
mup_embedding_multiplier (`bool`, *optional*, defaults to 10.0):
|
100 |
+
The embedding multiplier for MuP.
|
101 |
+
mup_attn_multiplier (`bool`, *optional*, defaults to 1.0):
|
102 |
+
The attention multiplier for MuP.
|
103 |
+
use_cache (`bool`, *optional*, defaults to True):
|
104 |
+
Whether to use cache for the model.
|
105 |
+
bos_token_id (`int`, *optional*, defaults to 100257):
|
106 |
+
The token ID for the beginning of sentence.
|
107 |
+
eos_token_id (`int`, *optional*, defaults to 100257):
|
108 |
+
The token ID for the end of sentence.
|
109 |
+
reorder_and_upcast_attn (`bool`, *optional*, defaults to False):
|
110 |
+
Whether to reorder and upcast attention.
|
111 |
+
pad_sequence_to_multiple_of_64 (`bool`, *optional*, defaults to True):
|
112 |
+
Whether to pad the sequence length to a multiple of 64.
|
113 |
+
**kwargs:
|
114 |
+
Additional keyword arguments.
|
115 |
+
|
116 |
+
Example:
|
117 |
+
|
118 |
+
```python
|
119 |
+
>>> from transformers import Phi3SmallConfig, Phi3SmallModel
|
120 |
+
|
121 |
+
>>> # Initializing a Phi3Small configuration
|
122 |
+
>>> configuration = Phi3SmallConfig()
|
123 |
+
|
124 |
+
>>> # Initializing a model (with random weights) from the configuration
|
125 |
+
>>> model = Phi3SmallModel(configuration)
|
126 |
+
|
127 |
+
>>> # Accessing the model configuration
|
128 |
+
>>> configuration = model.config
|
129 |
+
```
|
130 |
+
"""
|
131 |
+
|
132 |
+
model_type = "phi3small"
|
133 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
134 |
+
|
135 |
+
|
136 |
+
def __init__(
|
137 |
+
self,
|
138 |
+
# General information about the model
|
139 |
+
vocab_size: int =100352,
|
140 |
+
max_position_embeddings: int = 8192,
|
141 |
+
# RoPE Related Parameters
|
142 |
+
rope_embedding_base: float = 10**6,
|
143 |
+
rope_position_scale: float = 1.0,
|
144 |
+
rope_scaling: Optional[Dict[str, Union[float, List[float], int]]] = None,
|
145 |
+
# General Model Parameters
|
146 |
+
hidden_size: int = 4096,
|
147 |
+
num_hidden_layers: int = 32,
|
148 |
+
# KV Shared Attention Configurations
|
149 |
+
num_attention_heads: int = 32,
|
150 |
+
num_key_value_heads: int = 8,
|
151 |
+
# GEGELU Related Parameters
|
152 |
+
hidden_act: str = "gegelu",
|
153 |
+
gegelu_limit: float = 20.0,
|
154 |
+
gegelu_pad_to_256: bool = True,
|
155 |
+
ff_dim_multiplier: Optional[int] = None,
|
156 |
+
ff_intermediate_size: Optional[int] = 14336,
|
157 |
+
# Block Sparse Attention Parameters
|
158 |
+
blocksparse_homo_head_pattern: bool = False,
|
159 |
+
blocksparse_block_size: int = 64,
|
160 |
+
blocksparse_num_local_blocks: int = 16,
|
161 |
+
blocksparse_vert_stride: int = 8,
|
162 |
+
blocksparse_triton_kernel_block_size: int = 64,
|
163 |
+
# Frequency of block-sparsity
|
164 |
+
dense_attention_every_n_layers: Optional[int] = 2,
|
165 |
+
# Reegularization parameters
|
166 |
+
embedding_dropout_prob: float =0.1,
|
167 |
+
attention_dropout_prob: float = 0.0,
|
168 |
+
ffn_dropout_prob: float = 0.1,
|
169 |
+
layer_norm_epsilon=1e-5,
|
170 |
+
initializer_range=0.02,
|
171 |
+
# MuP parameters
|
172 |
+
mup_use_scaling: bool = True,
|
173 |
+
mup_width_multiplier: bool = 8.0,
|
174 |
+
mup_embedding_multiplier: bool = 10.0,
|
175 |
+
mup_attn_multiplier: bool =1.0,
|
176 |
+
use_cache=True,
|
177 |
+
# The model does not have a bos token id
|
178 |
+
# However, in order for some of the downstream libraries to not break
|
179 |
+
# we set this to be the same as the eos_token_id
|
180 |
+
bos_token_id: int = 100257,
|
181 |
+
eos_token_id: int = 100257,
|
182 |
+
reorder_and_upcast_attn=False,
|
183 |
+
# Configuration to pad sequence length to a multiple of 64
|
184 |
+
pad_sequence_to_multiple_of_64: bool = True,
|
185 |
+
**kwargs,
|
186 |
+
):
|
187 |
+
self.vocab_size = vocab_size
|
188 |
+
self.max_position_embeddings = max_position_embeddings
|
189 |
+
self.rope_embedding_base = rope_embedding_base
|
190 |
+
self.rope_position_scale = rope_position_scale
|
191 |
+
self.rope_scaling = rope_scaling
|
192 |
+
self.hidden_size = hidden_size
|
193 |
+
# QK Shared Attention
|
194 |
+
self.num_hidden_layers = num_hidden_layers
|
195 |
+
self.num_attention_heads = num_attention_heads
|
196 |
+
self.num_key_value_heads = num_key_value_heads
|
197 |
+
# Block Sparse Attention Pattern
|
198 |
+
self.blocksparse_homo_head_pattern = blocksparse_homo_head_pattern
|
199 |
+
self.blocksparse_block_size = blocksparse_block_size
|
200 |
+
self.blocksparse_num_local_blocks = blocksparse_num_local_blocks
|
201 |
+
self.blocksparse_vert_stride = blocksparse_vert_stride
|
202 |
+
self.blocksparse_triton_kernel_block_size = blocksparse_triton_kernel_block_size
|
203 |
+
# Frequency of block sparsity
|
204 |
+
self.dense_attention_every_n_layers = dense_attention_every_n_layers
|
205 |
+
# Activation function
|
206 |
+
self.hidden_act = hidden_act
|
207 |
+
self.gegelu_limit = gegelu_limit
|
208 |
+
self.gegelu_pad_to_256 = gegelu_pad_to_256
|
209 |
+
self.ff_dim_multiplier = ff_dim_multiplier
|
210 |
+
self.ff_intermediate_size = ff_intermediate_size
|
211 |
+
if self.ff_dim_multiplier is None and self.ff_intermediate_size is None:
|
212 |
+
raise ValueError(f"Cannot have both {self.ff_dim_multiplier} and {self.ff_intermediate_size} as None")
|
213 |
+
if self.ff_dim_multiplier is not None and self.ff_intermediate_size is not None:
|
214 |
+
raise ValueError(f"Cannot specify both {self.ff_dim_multiplier} and {self.ff_intermediate_size}.")
|
215 |
+
# General regularization
|
216 |
+
self.embedding_dropout_prob = embedding_dropout_prob
|
217 |
+
self.attention_dropout_prob = attention_dropout_prob
|
218 |
+
self.ffn_dropout_prob = ffn_dropout_prob
|
219 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
220 |
+
self.initializer_range = initializer_range
|
221 |
+
# MuP parameters
|
222 |
+
self.mup_use_scaling = mup_use_scaling
|
223 |
+
self.mup_width_multiplier = mup_width_multiplier
|
224 |
+
self.mup_embedding_multiplier = mup_embedding_multiplier
|
225 |
+
self.mup_attn_multiplier = mup_attn_multiplier
|
226 |
+
self.use_cache = use_cache
|
227 |
+
|
228 |
+
self.reorder_and_upcast_attn = reorder_and_upcast_attn
|
229 |
+
self.pad_sequence_to_multiple_of_64 = pad_sequence_to_multiple_of_64
|
230 |
+
|
231 |
+
self.bos_token_id = bos_token_id
|
232 |
+
self.eos_token_id = eos_token_id
|
233 |
+
|
234 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
235 |
+
|
236 |
+
@cached_property
|
237 |
+
def dummy_token_indices(self) -> List[int]:
|
238 |
+
# Importing here to avoid circular imports
|
239 |
+
from .tokenization_phi3_small import Phi3SmallTokenizer
|
240 |
+
tokenizer = Phi3SmallTokenizer()
|
241 |
+
return tokenizer.dummy_token_indices
|
242 |
+
|
243 |
+
@property
|
244 |
+
def intermediate_size(self) -> int:
|
245 |
+
if self.ff_intermediate_size is not None:
|
246 |
+
return self.ff_intermediate_size
|
247 |
+
intermediate_size = (self.ff_dim_multiplier) * (self.hidden_size // 3) * 2
|
248 |
+
if self.gegelu_pad_to_256:
|
249 |
+
intermediate_size = next_mult(intermediate_size, 256)
|
250 |
+
return intermediate_size
|
modeling_phi3_small.py
ADDED
@@ -0,0 +1,1140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Any, Dict, Optional, List, Tuple, Union
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
from einops import rearrange
|
9 |
+
|
10 |
+
from transformers.modeling_outputs import SequenceClassifierOutputWithPast, CausalLMOutputWithPast, BaseModelOutputWithPast
|
11 |
+
from transformers.modeling_utils import PreTrainedModel
|
12 |
+
from transformers.utils import logging
|
13 |
+
|
14 |
+
from transformers.cache_utils import Cache, DynamicCache
|
15 |
+
|
16 |
+
from .triton_flash_blocksparse_attn import BlockSparseParams
|
17 |
+
from .triton_blocksparse_attention_layer import BlockSparseAttentionLayer
|
18 |
+
from .positional_embedding import RotaryEmbedding
|
19 |
+
|
20 |
+
from .configuration_phi3_small import Phi3SmallConfig
|
21 |
+
|
22 |
+
# Flash Attention Related Imports
|
23 |
+
is_flash_attention_available = False
|
24 |
+
try:
|
25 |
+
import flash_attn
|
26 |
+
if int(flash_attn.__version__.split('.')[0]) < 2:
|
27 |
+
from flash_attn.flash_attn_interface import (
|
28 |
+
flash_attn_func,
|
29 |
+
flash_attn_unpadded_kvpacked_func as flash_attn_varlen_kvpacked_func,
|
30 |
+
)
|
31 |
+
|
32 |
+
# rename `max_seqlen`
|
33 |
+
def flash_attn_varlen_qkvpacked_func(qkv, cu_seqlens, max_seqlen, dropout_p=0.0, **kwargs):
|
34 |
+
return flash_attn_func(qkv, cu_seqlens, dropout_p=dropout_p, max_s=max_seqlen, **kwargs)
|
35 |
+
|
36 |
+
else:
|
37 |
+
from flash_attn.flash_attn_interface import (
|
38 |
+
flash_attn_varlen_kvpacked_func,
|
39 |
+
)
|
40 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
41 |
+
is_flash_attention_available = True
|
42 |
+
except ImportError:
|
43 |
+
pass
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
LegacyCache = Tuple[Tuple[torch.FloatTensor]]
|
48 |
+
|
49 |
+
# Taken from https://github.com/allenai/allennlp/blob/main/allennlp/nn/util.py
|
50 |
+
def info_value_of_dtype(dtype: torch.dtype):
|
51 |
+
"""
|
52 |
+
Returns the `finfo` or `iinfo` object of a given PyTorch data type. Does not allow torch.bool.
|
53 |
+
"""
|
54 |
+
if dtype == torch.bool:
|
55 |
+
raise TypeError("Does not support torch.bool")
|
56 |
+
elif dtype.is_floating_point:
|
57 |
+
return torch.finfo(dtype)
|
58 |
+
else:
|
59 |
+
return torch.iinfo(dtype)
|
60 |
+
|
61 |
+
|
62 |
+
# Taken from https://github.com/allenai/allennlp/blob/main/allennlp/nn/util.py
|
63 |
+
def min_value_of_dtype(dtype: torch.dtype):
|
64 |
+
"""
|
65 |
+
Returns the minimum value of a given PyTorch data type. Does not allow torch.bool.
|
66 |
+
"""
|
67 |
+
return info_value_of_dtype(dtype).min
|
68 |
+
|
69 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
70 |
+
def _get_unpad_data(attention_mask):
|
71 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
72 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
73 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
74 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
75 |
+
return (
|
76 |
+
indices,
|
77 |
+
cu_seqlens,
|
78 |
+
max_seqlen_in_batch,
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
@torch.jit.script
|
83 |
+
def quick_gelu(x):
|
84 |
+
return x * torch.sigmoid(1.702 * x)
|
85 |
+
|
86 |
+
|
87 |
+
@torch.jit.script
|
88 |
+
def gegelu(input, limit: Optional[float] = None):
|
89 |
+
a_gelu, a_linear = input[..., ::2], input[..., 1::2]
|
90 |
+
if limit is not None:
|
91 |
+
a_gelu = torch.where(
|
92 |
+
torch.isinf(a_gelu), a_gelu, a_gelu.clamp(min=None, max=limit)
|
93 |
+
)
|
94 |
+
a_linear = torch.where(
|
95 |
+
torch.isinf(a_linear), a_linear, a_linear.clamp(min=-limit, max=limit)
|
96 |
+
)
|
97 |
+
out_gelu = quick_gelu(a_gelu)
|
98 |
+
return out_gelu * (a_linear + 1)
|
99 |
+
|
100 |
+
def collapse_first_n_dims(x: torch.Tensor, n: int) -> torch.Tensor:
|
101 |
+
"""
|
102 |
+
Collapse the first `n` dimensions of a tensor into a single dimension.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
x (torch.Tensor): The input tensor.
|
106 |
+
n (int): The number of dimensions to collapse.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
torch.Tensor: The output tensor.
|
110 |
+
"""
|
111 |
+
return x.view(-1, *x.shape[n:])
|
112 |
+
|
113 |
+
def pad_tensor_to_next_mult_of(
|
114 |
+
tensor: torch.Tensor,
|
115 |
+
dim: int,
|
116 |
+
n: int,
|
117 |
+
) -> Tuple[torch.Tensor, int]:
|
118 |
+
"""
|
119 |
+
Pads a tensor along a specified dimension to the next multiple of a given number.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
tensor (torch.Tensor): The input tensor.
|
123 |
+
dim (int): The dimension along which to pad the tensor.
|
124 |
+
n (int): The number to pad the tensor to the next multiple of.
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
Tuple[torch.Tensor, int]: A tuple containing the padded tensor and the amount of padding added.
|
128 |
+
"""
|
129 |
+
residual = tensor.size(dim) % n
|
130 |
+
if residual == 0:
|
131 |
+
return tensor, 0
|
132 |
+
padding = n - residual
|
133 |
+
padding_tensor = torch.zeros((*tensor.size()[:dim], padding, *tensor.size()[dim + 1:]), device=tensor.device, dtype=tensor.dtype)
|
134 |
+
return torch.cat([tensor, padding_tensor], dim=dim), padding
|
135 |
+
|
136 |
+
def strip_padding_from_tensor(
|
137 |
+
tensor: torch.Tensor,
|
138 |
+
dim: int,
|
139 |
+
residual: int,
|
140 |
+
) -> torch.Tensor:
|
141 |
+
"""
|
142 |
+
Removes padding from a tensor along a specified dimension.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
tensor (torch.Tensor): The input tensor.
|
146 |
+
dim (int): The dimension along which to remove padding.
|
147 |
+
residual (int): The amount of padding to remove.
|
148 |
+
|
149 |
+
Returns:
|
150 |
+
torch.Tensor: The tensor with padding removed along the specified dimension.
|
151 |
+
"""
|
152 |
+
return torch.narrow(tensor, dim, 0, tensor.size(dim) - residual)
|
153 |
+
|
154 |
+
class Phi3SmallMLP(nn.Module):
|
155 |
+
def __init__(self, config: Phi3SmallConfig):
|
156 |
+
super().__init__()
|
157 |
+
self.config = config
|
158 |
+
assert self.config.hidden_act == "gegelu", "Only `gegelu` is supported for the Phi-3-small model .."
|
159 |
+
self.hidden_size = config.hidden_size
|
160 |
+
self.gegelu_limit = config.gegelu_limit
|
161 |
+
self.intermediate_size = config.intermediate_size
|
162 |
+
|
163 |
+
self.up_proj = nn.Linear(self.hidden_size, 2 * self.intermediate_size)
|
164 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size)
|
165 |
+
self.dropout = nn.Dropout(config.ffn_dropout_prob)
|
166 |
+
|
167 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
168 |
+
return self.dropout(
|
169 |
+
self.down_proj(
|
170 |
+
gegelu(self.up_proj(x), limit=self.gegelu_limit)
|
171 |
+
)
|
172 |
+
)
|
173 |
+
|
174 |
+
|
175 |
+
class Phi3SmallSelfAttention(nn.Module):
|
176 |
+
def __init__(self, config: Phi3SmallConfig, layer_idx: Optional[int] = None) -> None:
|
177 |
+
super().__init__()
|
178 |
+
self.config = config
|
179 |
+
self.layer_idx = layer_idx
|
180 |
+
if layer_idx is None:
|
181 |
+
logger.warning_once(
|
182 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
183 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
184 |
+
"when creating this class."
|
185 |
+
)
|
186 |
+
|
187 |
+
self.hidden_size = config.hidden_size
|
188 |
+
# Number of Query Heads
|
189 |
+
self.num_heads = config.num_attention_heads
|
190 |
+
self.head_dim = self.hidden_size // self.num_heads
|
191 |
+
# Number of Key Value Heads
|
192 |
+
self.num_key_value_heads = config.num_key_value_heads
|
193 |
+
self.num_q_per_kv = self.num_heads // self.num_key_value_heads
|
194 |
+
self.max_position_embeddings = config.max_position_embeddings
|
195 |
+
self.rope_embedding_base = config.rope_embedding_base
|
196 |
+
self.rope_position_scale = config.rope_position_scale
|
197 |
+
self.is_causal = True
|
198 |
+
|
199 |
+
self.attention_dropout_rate = config.attention_dropout_prob
|
200 |
+
|
201 |
+
norm_factor = None
|
202 |
+
if config.mup_use_scaling:
|
203 |
+
norm_factor = self.head_dim / config.mup_attn_multiplier
|
204 |
+
else:
|
205 |
+
norm_factor = math.sqrt(self.head_dim)
|
206 |
+
self.softmax_scale = 1.0 / norm_factor
|
207 |
+
|
208 |
+
self.query_key_value = nn.Linear(self.hidden_size, (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim)
|
209 |
+
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
|
210 |
+
|
211 |
+
self.blocksparse_params = None
|
212 |
+
# layer_idx is 0 indexed because that's what the KV Cache expects.
|
213 |
+
if self.config.dense_attention_every_n_layers and ((self.layer_idx + 1) % self.config.dense_attention_every_n_layers == 0):
|
214 |
+
logger.info(
|
215 |
+
f"Layer {layer_idx + 1} is using dense attention since it is divisible by "
|
216 |
+
f"{self.config.dense_attention_every_n_layers}"
|
217 |
+
)
|
218 |
+
assert is_flash_attention_available, "Flash Attention is not available, but is needed for dense attention"
|
219 |
+
else:
|
220 |
+
# BlockSparse related Parameters
|
221 |
+
self.blocksparse_params = BlockSparseParams.from_config(config)
|
222 |
+
|
223 |
+
if self.blocksparse:
|
224 |
+
active_head_range = None
|
225 |
+
"""
|
226 |
+
... note(bapatra)::
|
227 |
+
|
228 |
+
In case of tensor parallelism and while using the heterogeneous head patterns,
|
229 |
+
the active head range needs to be modified based on the tensor parallel rank
|
230 |
+
and the tensor parallel world size.
|
231 |
+
|
232 |
+
This is because in the case of heterogeneous head patterns, the kernel needs to know
|
233 |
+
which head is on which device, so that it can pick the corresponding blocksparse head
|
234 |
+
pattern correctly.
|
235 |
+
|
236 |
+
Example:
|
237 |
+
```python
|
238 |
+
|
239 |
+
if not self.blocksparse_params.homo_head_pattern:
|
240 |
+
tp_rank = torch.distributed.get_rank() % tp_world_size
|
241 |
+
num_heads_per_partition = num_heads // tp_world_size
|
242 |
+
active_head_range = (tp_rank * num_heads_per_partition, (tp_rank + 1) * num_heads_per_partition)
|
243 |
+
|
244 |
+
```
|
245 |
+
|
246 |
+
"""
|
247 |
+
|
248 |
+
self._blocksparse_layer = BlockSparseAttentionLayer(
|
249 |
+
n_heads=self.num_heads,
|
250 |
+
max_seq_len=self.max_position_embeddings,
|
251 |
+
sparse_block_size=self.blocksparse_params.block_size,
|
252 |
+
local_blocks=self.blocksparse_params.num_local_blocks,
|
253 |
+
vert_stride=self.blocksparse_params.vert_stride,
|
254 |
+
kernel_block_size=self.blocksparse_params.kernel_block_size,
|
255 |
+
homo_head=self.blocksparse_params.homo_head_pattern,
|
256 |
+
active_head_range=active_head_range,
|
257 |
+
)
|
258 |
+
self.rotary_emb = RotaryEmbedding.from_config(config)
|
259 |
+
|
260 |
+
|
261 |
+
@property
|
262 |
+
def blocksparse(self):
|
263 |
+
return self.blocksparse_params is not None
|
264 |
+
|
265 |
+
def _split_heads(self, mixed_x_layer: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
266 |
+
bs, sq, _ = mixed_x_layer.size()
|
267 |
+
r"""
|
268 |
+
The main idea is that we group tensors as
|
269 |
+
[bs, sq, (q00, q01, ... q0m, k0, v0), (q10, q11, ... q1m, k1, v1), ... (qn0, qn1, ... qnm, kn, vn)]
|
270 |
+
That ways, when the MP column sharding happens, this tensor will be sharded keeping all the
|
271 |
+
queries and keys intact. In order to get the correct qkv, we first break into groups, and then
|
272 |
+
index into the groups.
|
273 |
+
"""
|
274 |
+
|
275 |
+
intermediate_shape = (bs, sq, -1, (self.num_q_per_kv + 2), self.head_dim)
|
276 |
+
mixed_x_layer = mixed_x_layer.view(*intermediate_shape)
|
277 |
+
q = mixed_x_layer[:, :, :, :-2]
|
278 |
+
k = mixed_x_layer[:, :, :, [-2]]
|
279 |
+
v = mixed_x_layer[:, :, :, [-1]]
|
280 |
+
q, k, v = [
|
281 |
+
rearrange(
|
282 |
+
x,
|
283 |
+
"bs sq group nh hn -> bs sq (group nh) hn"
|
284 |
+
) for x in (q, k, v)
|
285 |
+
]
|
286 |
+
return q, k, v
|
287 |
+
|
288 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._unpad_input
|
289 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
290 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
291 |
+
|
292 |
+
|
293 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
294 |
+
|
295 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
296 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
297 |
+
|
298 |
+
if query_length == kv_seq_len:
|
299 |
+
query_layer = index_first_axis(
|
300 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
301 |
+
)
|
302 |
+
cu_seqlens_q = cu_seqlens_k
|
303 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
304 |
+
indices_q = indices_k
|
305 |
+
elif query_length == 1:
|
306 |
+
max_seqlen_in_batch_q = 1
|
307 |
+
cu_seqlens_q = torch.arange(
|
308 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
309 |
+
) # There is a memcpy here, that is very bad.
|
310 |
+
indices_q = cu_seqlens_q[:-1]
|
311 |
+
query_layer = query_layer.squeeze(1)
|
312 |
+
else:
|
313 |
+
# The -q_len: slice assumes left padding.
|
314 |
+
attention_mask = attention_mask[:, -query_length:]
|
315 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
316 |
+
|
317 |
+
return (
|
318 |
+
query_layer,
|
319 |
+
key_layer,
|
320 |
+
value_layer,
|
321 |
+
indices_q,
|
322 |
+
(cu_seqlens_q, cu_seqlens_k),
|
323 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
324 |
+
)
|
325 |
+
|
326 |
+
def _apply_blocksparse_attention(
|
327 |
+
self,
|
328 |
+
q: torch.Tensor,
|
329 |
+
k: torch.Tensor,
|
330 |
+
v: torch.Tensor,
|
331 |
+
attention_mask: Optional[torch.LongTensor],
|
332 |
+
return_attention_probs: bool = False,
|
333 |
+
) -> torch.Tensor:
|
334 |
+
"""
|
335 |
+
Applies blocksparse attention to the input tensors.
|
336 |
+
|
337 |
+
Args:
|
338 |
+
q (torch.Tensor): The query tensor of shape (bs, nqp, seq_len, hn).
|
339 |
+
k (torch.Tensor): The key tensor of shape (bs, nkp, seq_len, hn).
|
340 |
+
v (torch.Tensor): The value tensor of shape (bs, nkp, seq_len, hn).
|
341 |
+
attention_mask (Optional[torch.LongTensor]): The attention mask tensor of shape (bs, seq_len).
|
342 |
+
return_attention_probs (bool, optional): Whether to return attention probabilities. Defaults to False.
|
343 |
+
|
344 |
+
Returns:
|
345 |
+
torch.Tensor: The context layer tensor of shape (bs, nqp, seq_len, hn).
|
346 |
+
"""
|
347 |
+
assert not return_attention_probs, "return_attention_probs is not supported for blocksparse attention"
|
348 |
+
q, k, v = q.contiguous(), k.contiguous(), v.contiguous()
|
349 |
+
# shape: (bs, nqp, seq_len, hn)
|
350 |
+
if torch.is_grad_enabled():
|
351 |
+
# Training or non-batched inference
|
352 |
+
context_layer = self._blocksparse_layer(
|
353 |
+
q=q, k=k, v=v, sm_scale=self.softmax_scale
|
354 |
+
)
|
355 |
+
elif attention_mask is None:
|
356 |
+
if q.size(0) != 1:
|
357 |
+
logger.warning_once(
|
358 |
+
"You are attempting to do batched inference without passing the attention mask.\n"
|
359 |
+
"This is okay if you are running loglikelihood requests. However, if you want to do generation, "
|
360 |
+
"this probably won't work as expected. Please pass the attention mask to the forward function."
|
361 |
+
)
|
362 |
+
context_layer = self._blocksparse_layer(
|
363 |
+
q=q, k=k, v=v, sm_scale=self.softmax_scale
|
364 |
+
)
|
365 |
+
else:
|
366 |
+
"""
|
367 |
+
Shapes of tensors are as follows:
|
368 |
+
q: (bs, nqp, seq_len, hdim)
|
369 |
+
k: (bs, nkp, seq_len, hdim)
|
370 |
+
v: (bs, nkp, seq_len, hdim)
|
371 |
+
We first need to transpose the shapes to fit what the
|
372 |
+
kernel needs, and the reinvert it back at the end of the operations
|
373 |
+
"""
|
374 |
+
assert attention_mask.ndim == 2, "The kernel, like flash-attention-2, only supports 2d attention masks ..."
|
375 |
+
left_paddings = attention_mask.shape[1] - attention_mask.sum(dim=-1)
|
376 |
+
# shape: (bs, seq_len, nqp, hdim)
|
377 |
+
q = q.transpose(1, 2).contiguous()
|
378 |
+
# shape: (bs, seq_len, nkp, hdim)
|
379 |
+
k = k.transpose(1, 2).contiguous()
|
380 |
+
# shape: (bs, seq_len, nkp, hdim)
|
381 |
+
v = v.transpose(1, 2).contiguous()
|
382 |
+
context_layer = self._blocksparse_layer(
|
383 |
+
q=q, k=k, v=v, sm_scale=self.softmax_scale, left_paddings=left_paddings.to(torch.int32)
|
384 |
+
)
|
385 |
+
# shape: (bs, nqp, seq_len, hdim)
|
386 |
+
context_layer = context_layer.transpose(1, 2).contiguous()
|
387 |
+
return context_layer
|
388 |
+
|
389 |
+
def _apply_dense_attention(
|
390 |
+
self,
|
391 |
+
q: torch.Tensor,
|
392 |
+
k: torch.Tensor,
|
393 |
+
v: torch.Tensor,
|
394 |
+
attention_mask: torch.Tensor,
|
395 |
+
return_attention_probs: bool = False,
|
396 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
397 |
+
"""
|
398 |
+
Apply dense attention
|
399 |
+
|
400 |
+
Args:
|
401 |
+
q (torch.Tensor):
|
402 |
+
The query tensor, shape: (bs, num_query_heads, seq_len, head_size)
|
403 |
+
k (torch.Tensor):
|
404 |
+
The key tensor, shape: (bs, num_query_heads, seq_len, head_size)
|
405 |
+
v (torch.Tensor):
|
406 |
+
The value tensor, shape: (bs, num_query_heads, seq_len, head_size)
|
407 |
+
|
408 |
+
return_attention_probs (bool, optional):
|
409 |
+
Return the attention probabilities. Defaults to False.
|
410 |
+
|
411 |
+
Returns:
|
412 |
+
Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
413 |
+
Return the output of the attention aggregation. If `return_attention_probs` is True, then
|
414 |
+
also return the attention probabilities
|
415 |
+
|
416 |
+
.. note::
|
417 |
+
Right now, am assuming the expansion for the query key values is already done
|
418 |
+
outside. But ideally, since Flash attention handles the GQA correctly, we can
|
419 |
+
avoid doing that.
|
420 |
+
|
421 |
+
"""
|
422 |
+
attention_dropout_prob = self.attention_dropout_rate if self.training else 0.0
|
423 |
+
# Get into the correct shape for the Flash Attention API
|
424 |
+
# shape: (bs, seq_len, nqp, hn)
|
425 |
+
q = q.transpose(1, 2).contiguous()
|
426 |
+
query_length = q.size(1)
|
427 |
+
# shape: (bs, seq_len, npq, hn)
|
428 |
+
k = k.transpose(1, 2).contiguous()
|
429 |
+
# shape: (bs, seq_len, npq, hn)
|
430 |
+
v = v.transpose(1, 2).contiguous()
|
431 |
+
|
432 |
+
if attention_mask is not None:
|
433 |
+
causal = q.size(2) == k.size(2)
|
434 |
+
batch_size = q.shape[0]
|
435 |
+
flat_q, flat_k, flat_v, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
436 |
+
q, k, v, attention_mask, query_length
|
437 |
+
)
|
438 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
439 |
+
max_seqlen_q, max_seqlen_k = max_seq_lens
|
440 |
+
flat_kv = torch.cat((flat_k.unsqueeze(1), flat_v.unsqueeze(1)), dim=1)
|
441 |
+
attn_output_unpad = flash_attn_varlen_kvpacked_func(
|
442 |
+
q=flat_q,
|
443 |
+
kv=flat_kv,
|
444 |
+
cu_seqlens_q=cu_seqlens_q,
|
445 |
+
cu_seqlens_k=cu_seqlens_k,
|
446 |
+
max_seqlen_q=max_seqlen_q,
|
447 |
+
max_seqlen_k=max_seqlen_k,
|
448 |
+
dropout_p=attention_dropout_prob,
|
449 |
+
softmax_scale=self.softmax_scale,
|
450 |
+
causal=causal,
|
451 |
+
return_attn_probs=return_attention_probs
|
452 |
+
)
|
453 |
+
attention_output = pad_input(
|
454 |
+
attn_output_unpad, indices_q, batch_size, query_length
|
455 |
+
)
|
456 |
+
else:
|
457 |
+
kv = torch.cat((k.unsqueeze(2), v.unsqueeze(2)), dim=2)
|
458 |
+
cu_seqlens_q = torch.arange(
|
459 |
+
0, (q.size(0) + 1), device=q.device, dtype=torch.int32
|
460 |
+
) * q.size(1)
|
461 |
+
cu_seqlens_kv = torch.arange(
|
462 |
+
0, (kv.size(0) + 1), device=kv.device, dtype=torch.int32
|
463 |
+
) * kv.size(1)
|
464 |
+
max_seqlen_q = q.size(1)
|
465 |
+
max_seqlen_k = kv.size(1)
|
466 |
+
attention_output = flash_attn_varlen_kvpacked_func(
|
467 |
+
q=collapse_first_n_dims(q, 2),
|
468 |
+
kv=collapse_first_n_dims(kv, 2),
|
469 |
+
cu_seqlens_q=cu_seqlens_q,
|
470 |
+
cu_seqlens_k=cu_seqlens_kv,
|
471 |
+
max_seqlen_q=max_seqlen_q,
|
472 |
+
max_seqlen_k=max_seqlen_k,
|
473 |
+
dropout_p=attention_dropout_prob,
|
474 |
+
softmax_scale=self.softmax_scale,
|
475 |
+
causal=q.size(1) == kv.size(1),
|
476 |
+
return_attn_probs=return_attention_probs
|
477 |
+
)
|
478 |
+
if return_attention_probs:
|
479 |
+
(context_layer, attn_probs) = attention_output
|
480 |
+
context_layer = context_layer.view(q.size(0), q.size(1), -1, q.size(3)).transpose(1, 2).contiguous()
|
481 |
+
return (context_layer, attn_probs)
|
482 |
+
context_layer = attention_output
|
483 |
+
context_layer = context_layer.view(q.size(0), q.size(1), -1, q.size(3)).transpose(1, 2).contiguous()
|
484 |
+
return context_layer
|
485 |
+
|
486 |
+
|
487 |
+
def expand_kv_to_q_size(self, kv: torch.Tensor, num_q_per_kv: int) -> torch.Tensor:
|
488 |
+
"""
|
489 |
+
Expand the key-value tensor to match the size of the query tensor.
|
490 |
+
|
491 |
+
Args:
|
492 |
+
kv (torch.Tensor): The key-value tensor of shape (bsz, nkp, 2, seq_len, hdim).
|
493 |
+
num_q_per_kv (int): The number of queries per key-value.
|
494 |
+
|
495 |
+
Returns:
|
496 |
+
torch.Tensor: The expanded key-value tensor of shape (bsz, nqp, 2, seq_len, hdim).
|
497 |
+
Where nqp = num_q_per_kv * nkp
|
498 |
+
|
499 |
+
.. note(bapatra)::
|
500 |
+
Right now, I am using a repeat_interleave to expand the kv to the size of q.
|
501 |
+
This incurs a memory penalty, since the tensors are actually copied.
|
502 |
+
TODO: If this does yield benefits, then potentially we can use the re-written
|
503 |
+
flash attention kernel that can handle GQA.
|
504 |
+
"""
|
505 |
+
|
506 |
+
repeats = torch.tensor([num_q_per_kv] * kv.size(1)).to(kv.device)
|
507 |
+
total = repeats.sum()
|
508 |
+
expanded_kv = torch.repeat_interleave(
|
509 |
+
kv,
|
510 |
+
repeats=repeats,
|
511 |
+
dim=1,
|
512 |
+
output_size=total
|
513 |
+
)
|
514 |
+
return expanded_kv
|
515 |
+
|
516 |
+
def forward(
|
517 |
+
self,
|
518 |
+
hidden_states: torch.Tensor,
|
519 |
+
attention_mask: Optional[torch.Tensor] = None,
|
520 |
+
position_ids: Optional[torch.LongTensor] = None,
|
521 |
+
past_key_values: Optional[Cache] = None,
|
522 |
+
output_attentions: bool = False,
|
523 |
+
use_cache: bool = False,
|
524 |
+
**kwargs,
|
525 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
526 |
+
"""
|
527 |
+
The forward function of the Self Attention Layer.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
hidden_states (torch.Tensor):
|
531 |
+
The input tensor of shape (bs, q_len, h).
|
532 |
+
attention_mask (Optional[torch.Tensor], optional):
|
533 |
+
The attention mask tensor of shape (bs, seq_len). This is the 2D attention mask tensor as is standard in the flash-attention
|
534 |
+
kernel.
|
535 |
+
Defaults to None.
|
536 |
+
position_ids (Optional[torch.LongTensor], optional):
|
537 |
+
The position ids tensor of shape (bs, q_len). Defaults to None. Unused by the function.
|
538 |
+
past_key_value (Optional[Cache], optional):
|
539 |
+
The previous kv cache values. Defaults to None.
|
540 |
+
output_attentions (bool, optional):
|
541 |
+
Whether to return the attention scores. Defaults to False.
|
542 |
+
.. note::
|
543 |
+
For the blocksparse attention kernel, we do not support returning the attention scores.
|
544 |
+
use_cache (bool, optional):
|
545 |
+
Whether to use the cache for storing the kv. Defaults to False.
|
546 |
+
|
547 |
+
Returns:
|
548 |
+
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
549 |
+
The output tensor of shape (bs, q_len, h),
|
550 |
+
the attention scores tensor of shape (bs, nqp, q_len, seq_len) if `output_attentions` is True,
|
551 |
+
and the updated cache values if `use_cache` is True.
|
552 |
+
|
553 |
+
Notations:
|
554 |
+
------------
|
555 |
+
bs: batch size
|
556 |
+
sq_len: sequence length of the entire sequence
|
557 |
+
q_len: sequence length of the query
|
558 |
+
cache_sq: sequence length in the cache
|
559 |
+
If there is no cache then cache_sq = 0
|
560 |
+
and sq_len = q_len
|
561 |
+
otherwise sq_len = q_len + cache_sq
|
562 |
+
h: hidden size
|
563 |
+
nq: number of query heads
|
564 |
+
nkv: number of key heads
|
565 |
+
hn: hidden size per head
|
566 |
+
hn = h // nq
|
567 |
+
nqp: number of query heads (per MP partition)
|
568 |
+
nqp = nq // (num mp partitions)
|
569 |
+
nkvp: number of key-value heads (per MP partition)
|
570 |
+
nkvp = nk // (num mp partitions)
|
571 |
+
|
572 |
+
"""
|
573 |
+
# shape: (bs, q_len, h)
|
574 |
+
bsz, q_len, _ = hidden_states.size()
|
575 |
+
|
576 |
+
# shape: (bs, q_len, (nqp + 2 * nkvp) * hn)
|
577 |
+
mixed_x_layer = self.query_key_value(hidden_states)
|
578 |
+
# shape: (bs, q_len, nqp, hn), shape: (bs, q_len, nkvp, hn), shape: (bs, q_len, nkvp, hn)
|
579 |
+
q, k, v = self._split_heads(mixed_x_layer)
|
580 |
+
|
581 |
+
# shape: (bs, qnp, q_len, hn)
|
582 |
+
query_states = q.permute(0, 2, 1, 3).contiguous()
|
583 |
+
# shape: (bs, nkvp, q_len, hn)
|
584 |
+
key_states = k.permute(0, 2, 1, 3).contiguous()
|
585 |
+
# shape: (bs, nkvp, q_len, hn)
|
586 |
+
value_states = v.permute(0, 2, 1, 3).contiguous()
|
587 |
+
|
588 |
+
kv_seq_len = key_states.shape[-2]
|
589 |
+
if past_key_values is not None:
|
590 |
+
if self.layer_idx is None:
|
591 |
+
raise ValueError(
|
592 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
593 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
594 |
+
"with a layer index."
|
595 |
+
)
|
596 |
+
if self.rotary_emb is not None:
|
597 |
+
seqlen_offset = past_key_values.get_usable_length(kv_seq_len, layer_idx=self.layer_idx)
|
598 |
+
# shape: (bs, nqp, q_len, hn), shape: (bs, nkvp, q_len, hn)
|
599 |
+
query_states, key_states = self.rotary_emb(
|
600 |
+
query_states, key_states, seq_dimension=2, seqlen_offset=seqlen_offset
|
601 |
+
)
|
602 |
+
key_states, value_states = past_key_values.update(key_states=key_states, value_states=value_states, layer_idx=self.layer_idx)
|
603 |
+
else:
|
604 |
+
# In this case seq_len = q_len and cache_sq = 0
|
605 |
+
if self.rotary_emb is not None:
|
606 |
+
# shape: (bs, nqp, seq_len, hn), shape: (bs, nkvp, seq_len, hn)
|
607 |
+
query_states, key_states = self.rotary_emb(query_states, key_states, seq_dimension=2)
|
608 |
+
|
609 |
+
# shape: (bs, nkvp, 2, seq_len, hn)
|
610 |
+
kv_states = torch.cat((key_states.unsqueeze(2), value_states.unsqueeze(2)), dim=2)
|
611 |
+
# shape: (bs, nqp, 2, seq_len, hn)
|
612 |
+
expanded_kv_states = self.expand_kv_to_q_size(kv_states, num_q_per_kv=self.num_q_per_kv)
|
613 |
+
# shape: (bs, nqp, seq_len, hn), shape: (bs, nqp, seq_len, hn)
|
614 |
+
expanded_key_states, expanded_value_states = expanded_kv_states[:, :, 0], expanded_kv_states[:, :, 1]
|
615 |
+
if self.blocksparse:
|
616 |
+
attn_function_output = self._apply_blocksparse_attention(
|
617 |
+
q=query_states,
|
618 |
+
k=expanded_key_states,
|
619 |
+
v=expanded_value_states,
|
620 |
+
attention_mask=attention_mask,
|
621 |
+
return_attention_probs=output_attentions
|
622 |
+
)
|
623 |
+
else:
|
624 |
+
attn_function_output = self._apply_dense_attention(
|
625 |
+
q=query_states,
|
626 |
+
k=expanded_key_states,
|
627 |
+
v=expanded_value_states,
|
628 |
+
attention_mask=attention_mask,
|
629 |
+
return_attention_probs=output_attentions
|
630 |
+
)
|
631 |
+
|
632 |
+
attn_weights = None
|
633 |
+
if output_attentions:
|
634 |
+
attn_output, attn_weights = attn_function_output
|
635 |
+
else:
|
636 |
+
# shape: (bs, nqp, seq_len, hn)
|
637 |
+
attn_output = attn_function_output
|
638 |
+
# shape: (bs, seq_len, nqp, hn)
|
639 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
640 |
+
|
641 |
+
# shape: (bs, seq_len, h)
|
642 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
643 |
+
attn_output = self.dense(attn_output)
|
644 |
+
return attn_output, attn_weights, past_key_values
|
645 |
+
|
646 |
+
|
647 |
+
class Phi3SmallDecoderLayer(nn.Module):
|
648 |
+
def __init__(self, config: Phi3SmallConfig, layer_idx: int):
|
649 |
+
super().__init__()
|
650 |
+
self.hidden_size = config.hidden_size
|
651 |
+
self.self_attn = Phi3SmallSelfAttention(config, layer_idx)
|
652 |
+
self.mlp = Phi3SmallMLP(config)
|
653 |
+
|
654 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
655 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
656 |
+
|
657 |
+
def forward(
|
658 |
+
self,
|
659 |
+
hidden_states: torch.Tensor,
|
660 |
+
attention_mask: Optional[torch.Tensor] = None,
|
661 |
+
position_ids: Optional[torch.LongTensor] = None,
|
662 |
+
past_key_values: Optional[Cache] = None,
|
663 |
+
output_attentions: Optional[bool] = None,
|
664 |
+
use_cache: Optional[bool] = None,
|
665 |
+
**kwargs,
|
666 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Cache]]:
|
667 |
+
residual = hidden_states
|
668 |
+
hidden_states = self.input_layernorm(hidden_states)
|
669 |
+
|
670 |
+
# Self Attention
|
671 |
+
hidden_states, self_attn_weights, present_key_values = self.self_attn(
|
672 |
+
hidden_states=hidden_states,
|
673 |
+
attention_mask=attention_mask,
|
674 |
+
position_ids=position_ids,
|
675 |
+
past_key_values=past_key_values,
|
676 |
+
output_attentions=output_attentions,
|
677 |
+
use_cache=use_cache,
|
678 |
+
)
|
679 |
+
hidden_states = residual + hidden_states
|
680 |
+
|
681 |
+
# Fully Connected
|
682 |
+
residual = hidden_states
|
683 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
684 |
+
hidden_states = self.mlp(hidden_states)
|
685 |
+
hidden_states = residual + hidden_states
|
686 |
+
|
687 |
+
outputs = (hidden_states,)
|
688 |
+
|
689 |
+
if output_attentions:
|
690 |
+
outputs += (self_attn_weights,)
|
691 |
+
|
692 |
+
if use_cache:
|
693 |
+
outputs += (present_key_values,)
|
694 |
+
|
695 |
+
return outputs
|
696 |
+
|
697 |
+
|
698 |
+
|
699 |
+
class Phi3SmallPreTrainedModel(PreTrainedModel):
|
700 |
+
config_class = Phi3SmallConfig
|
701 |
+
base_model_prefix = "model"
|
702 |
+
supports_gradient_checkpointing = True
|
703 |
+
_no_split_modules = ["Phi3SmallDecoderLayer"]
|
704 |
+
skip_keys_device_placement = "past_key_values"
|
705 |
+
_supports_flash_attn_2 = True
|
706 |
+
_supports_sdpa = False
|
707 |
+
_supports_cache_class = True
|
708 |
+
|
709 |
+
def _init_weights(self, module: nn.Module):
|
710 |
+
std = self.config.initializer_range
|
711 |
+
if isinstance(module, nn.Linear):
|
712 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
713 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
714 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
715 |
+
elif isinstance(module, nn.Embedding):
|
716 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
717 |
+
if module.padding_idx is not None:
|
718 |
+
module.weight.data[module.padding_idx].zero_()
|
719 |
+
elif isinstance(module, nn.LayerNorm):
|
720 |
+
module.bias.data.zero_()
|
721 |
+
module.weight.data.fill_(1.0)
|
722 |
+
|
723 |
+
# The output projection on the decoder attention layer as well as the down_proj in the MLP are scaled
|
724 |
+
# differently (dubbed `output_layer_init_method` in the Megatron code). This is replicated here
|
725 |
+
for name, p in module.named_parameters():
|
726 |
+
if any(x in name for x in ("c_proj.weight", "down_proj.weight", "o_proj.weight")):
|
727 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
728 |
+
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.num_hidden_layers)))
|
729 |
+
|
730 |
+
|
731 |
+
class Phi3SmallModel(Phi3SmallPreTrainedModel):
|
732 |
+
|
733 |
+
def __init__(self, config):
|
734 |
+
super().__init__(config)
|
735 |
+
self.config = config
|
736 |
+
|
737 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
738 |
+
|
739 |
+
# Embedding Dropout
|
740 |
+
self.embedding_dropout = nn.Dropout(config.embedding_dropout_prob)
|
741 |
+
|
742 |
+
# MuP Embedding scaling
|
743 |
+
self.mup_embedding_multiplier = config.mup_embedding_multiplier
|
744 |
+
|
745 |
+
self.layers = nn.ModuleList([Phi3SmallDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
746 |
+
|
747 |
+
self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
748 |
+
|
749 |
+
self.gradient_checkpointing = False
|
750 |
+
|
751 |
+
# Initialize weights and apply final processing
|
752 |
+
self.post_init()
|
753 |
+
|
754 |
+
def get_input_embeddings(self):
|
755 |
+
return self.embed_tokens
|
756 |
+
|
757 |
+
def set_input_embeddings(self, value):
|
758 |
+
self.embed_tokens = value
|
759 |
+
|
760 |
+
@property
|
761 |
+
def pad_sequence_to_multiple_of_64(self):
|
762 |
+
# We only need to do this for the backward pass. So only required
|
763 |
+
# when we are in the context of generating gradients
|
764 |
+
return self.config.pad_sequence_to_multiple_of_64 and torch.is_grad_enabled()
|
765 |
+
|
766 |
+
def forward(
|
767 |
+
self,
|
768 |
+
input_ids: torch.LongTensor = None,
|
769 |
+
attention_mask: Optional[torch.Tensor] = None,
|
770 |
+
position_ids: Optional[torch.LongTensor] = None,
|
771 |
+
past_key_values: Optional[Union[Cache, LegacyCache]] = None,
|
772 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
773 |
+
use_cache: Optional[bool] = None,
|
774 |
+
output_attentions: Optional[bool] = None,
|
775 |
+
output_hidden_states: Optional[bool] = None,
|
776 |
+
return_dict: Optional[bool] = None,
|
777 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
778 |
+
|
779 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
780 |
+
output_hidden_states = (
|
781 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
782 |
+
)
|
783 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
784 |
+
|
785 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
786 |
+
|
787 |
+
if input_ids is not None and inputs_embeds is not None:
|
788 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
789 |
+
elif input_ids is not None:
|
790 |
+
batch_size, seq_length = input_ids.shape
|
791 |
+
elif inputs_embeds is not None:
|
792 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
793 |
+
else:
|
794 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
795 |
+
|
796 |
+
if self.gradient_checkpointing and self.training:
|
797 |
+
if use_cache:
|
798 |
+
logger.warning_once(
|
799 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
800 |
+
)
|
801 |
+
use_cache = False
|
802 |
+
|
803 |
+
past_key_values_length = 0
|
804 |
+
|
805 |
+
if use_cache:
|
806 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
807 |
+
if use_legacy_cache:
|
808 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
809 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
810 |
+
|
811 |
+
if position_ids is None:
|
812 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
813 |
+
position_ids = torch.arange(
|
814 |
+
past_key_values_length, past_key_values_length + seq_length, dtype=torch.long, device=device
|
815 |
+
)
|
816 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
817 |
+
else:
|
818 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
819 |
+
|
820 |
+
if attention_mask is not None:
|
821 |
+
if batch_size <= 0:
|
822 |
+
raise ValueError("batch_size has to be defined and > 0")
|
823 |
+
|
824 |
+
if inputs_embeds is None:
|
825 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
826 |
+
inputs_embeds = self.embedding_dropout(inputs_embeds)
|
827 |
+
|
828 |
+
if self.mup_embedding_multiplier is not None and self.mup_embedding_multiplier > 0.0:
|
829 |
+
inputs_embeds = inputs_embeds * self.mup_embedding_multiplier
|
830 |
+
|
831 |
+
residual = 0
|
832 |
+
if self.pad_sequence_to_multiple_of_64:
|
833 |
+
# note(bapatra): Since we don't particularly use the position_ids and the attention mask
|
834 |
+
# we don't need to pad them
|
835 |
+
inputs_embeds, residual = pad_tensor_to_next_mult_of(tensor=inputs_embeds, dim=1, n=64)
|
836 |
+
|
837 |
+
hidden_states = inputs_embeds
|
838 |
+
|
839 |
+
# decoder layers
|
840 |
+
all_hidden_states = () if output_hidden_states else None
|
841 |
+
all_self_attns = () if output_attentions else None
|
842 |
+
next_decoder_cache = None
|
843 |
+
|
844 |
+
for decoder_layer in self.layers:
|
845 |
+
if output_hidden_states:
|
846 |
+
all_hidden_states += (hidden_states,)
|
847 |
+
|
848 |
+
if self.gradient_checkpointing and self.training:
|
849 |
+
layer_outputs = self._gradient_checkpointing_func(
|
850 |
+
decoder_layer.__call__,
|
851 |
+
hidden_states,
|
852 |
+
attention_mask,
|
853 |
+
position_ids,
|
854 |
+
past_key_values,
|
855 |
+
output_attentions,
|
856 |
+
use_cache,
|
857 |
+
)
|
858 |
+
else:
|
859 |
+
layer_outputs = decoder_layer(
|
860 |
+
hidden_states,
|
861 |
+
attention_mask=attention_mask,
|
862 |
+
position_ids=position_ids,
|
863 |
+
past_key_values=past_key_values,
|
864 |
+
output_attentions=output_attentions,
|
865 |
+
use_cache=use_cache,
|
866 |
+
)
|
867 |
+
hidden_states = layer_outputs[0]
|
868 |
+
|
869 |
+
if use_cache:
|
870 |
+
# Following the Mistral schema for layer return values
|
871 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
872 |
+
if output_attentions:
|
873 |
+
all_self_attns += (layer_outputs[1],)
|
874 |
+
|
875 |
+
hidden_states = self.final_layernorm(hidden_states)
|
876 |
+
|
877 |
+
if residual > 0:
|
878 |
+
hidden_states = strip_padding_from_tensor(tensor=hidden_states, dim=1, residual=residual)
|
879 |
+
|
880 |
+
# add hidden states from the last decoder layer
|
881 |
+
if output_hidden_states:
|
882 |
+
all_hidden_states += (hidden_states,)
|
883 |
+
|
884 |
+
next_cache = None
|
885 |
+
if use_cache:
|
886 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
887 |
+
|
888 |
+
if not return_dict:
|
889 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
890 |
+
return BaseModelOutputWithPast(
|
891 |
+
last_hidden_state=hidden_states,
|
892 |
+
past_key_values=next_cache,
|
893 |
+
hidden_states=all_hidden_states,
|
894 |
+
attentions=all_self_attns,
|
895 |
+
)
|
896 |
+
|
897 |
+
|
898 |
+
class Phi3SmallForCausalLM(Phi3SmallPreTrainedModel):
|
899 |
+
_tied_weights_keys = ["lm_head.weight"]
|
900 |
+
|
901 |
+
def __init__(self, config):
|
902 |
+
super().__init__(config)
|
903 |
+
self.model = Phi3SmallModel(config)
|
904 |
+
self.vocab_size = config.vocab_size
|
905 |
+
self.lm_head = nn.Linear(config.hidden_size, self.vocab_size, bias=False)
|
906 |
+
self.mup_width_multiplier = config.mup_width_multiplier
|
907 |
+
|
908 |
+
# Create the mask for the dummy tokens in the vocabulary
|
909 |
+
dummy_token_indices = config.dummy_token_indices
|
910 |
+
dummy_tokens_mask = torch.zeros(self.vocab_size).bool()
|
911 |
+
dummy_tokens_mask[dummy_token_indices] = True
|
912 |
+
# shape: (vocab_size,)
|
913 |
+
self.register_buffer("dummy_tokens_mask", dummy_tokens_mask, persistent=False)
|
914 |
+
|
915 |
+
# Initialize weights and apply final processing
|
916 |
+
self.post_init()
|
917 |
+
|
918 |
+
def get_input_embeddings(self):
|
919 |
+
return self.model.embed_tokens
|
920 |
+
|
921 |
+
def set_input_embeddings(self, value):
|
922 |
+
self.model.embed_tokens = value
|
923 |
+
|
924 |
+
def get_output_embeddings(self):
|
925 |
+
return self.lm_head
|
926 |
+
|
927 |
+
def set_output_embeddings(self, value):
|
928 |
+
self.lm_head = value
|
929 |
+
|
930 |
+
def set_decoder(self, decoder):
|
931 |
+
self.model = decoder
|
932 |
+
|
933 |
+
def get_decoder(self):
|
934 |
+
return self.model
|
935 |
+
|
936 |
+
def forward(
|
937 |
+
self,
|
938 |
+
input_ids: torch.LongTensor = None,
|
939 |
+
attention_mask: Optional[torch.Tensor] = None,
|
940 |
+
position_ids: Optional[torch.LongTensor] = None,
|
941 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
942 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
943 |
+
labels: Optional[torch.LongTensor] = None,
|
944 |
+
use_cache: Optional[bool] = None,
|
945 |
+
output_attentions: Optional[bool] = None,
|
946 |
+
output_hidden_states: Optional[bool] = None,
|
947 |
+
return_dict: Optional[bool] = None,
|
948 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
949 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
950 |
+
output_hidden_states = (
|
951 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
952 |
+
)
|
953 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
954 |
+
|
955 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
956 |
+
outputs = self.model(
|
957 |
+
input_ids=input_ids,
|
958 |
+
attention_mask=attention_mask,
|
959 |
+
position_ids=position_ids,
|
960 |
+
past_key_values=past_key_values,
|
961 |
+
inputs_embeds=inputs_embeds,
|
962 |
+
use_cache=use_cache,
|
963 |
+
output_attentions=output_attentions,
|
964 |
+
output_hidden_states=output_hidden_states,
|
965 |
+
return_dict=return_dict,
|
966 |
+
)
|
967 |
+
|
968 |
+
hidden_states = outputs[0]
|
969 |
+
logits = self.lm_head(hidden_states)
|
970 |
+
logits = logits.float()
|
971 |
+
if self.mup_width_multiplier:
|
972 |
+
logits = logits / self.mup_width_multiplier
|
973 |
+
logits = logits.masked_fill(self.dummy_tokens_mask, min_value_of_dtype(logits.dtype))
|
974 |
+
|
975 |
+
loss = None
|
976 |
+
if labels is not None:
|
977 |
+
# Shift so that tokens < n predict n
|
978 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
979 |
+
shift_labels = labels[..., 1:].contiguous()
|
980 |
+
# Flatten the tokens
|
981 |
+
loss_fct = nn.CrossEntropyLoss()
|
982 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
983 |
+
shift_labels = shift_labels.view(-1)
|
984 |
+
# Enable model parallelism
|
985 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
986 |
+
loss = loss_fct(shift_logits, shift_labels)
|
987 |
+
|
988 |
+
if not return_dict:
|
989 |
+
output = (logits,) + outputs[1:]
|
990 |
+
return (loss,) + output if loss is not None else output
|
991 |
+
|
992 |
+
return CausalLMOutputWithPast(
|
993 |
+
loss=loss,
|
994 |
+
logits=logits,
|
995 |
+
past_key_values=outputs.past_key_values,
|
996 |
+
hidden_states=outputs.hidden_states,
|
997 |
+
attentions=outputs.attentions,
|
998 |
+
)
|
999 |
+
|
1000 |
+
def prepare_inputs_for_generation(
|
1001 |
+
self,
|
1002 |
+
input_ids: torch.LongTensor,
|
1003 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1004 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1005 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1006 |
+
**kwargs
|
1007 |
+
) -> Dict[str, Any]:
|
1008 |
+
# only last token for inputs_ids if past is defined in kwargs
|
1009 |
+
if past_key_values:
|
1010 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
1011 |
+
|
1012 |
+
position_ids = kwargs.get("position_ids", None)
|
1013 |
+
|
1014 |
+
if attention_mask is not None and position_ids is None:
|
1015 |
+
# create position_ids on the fly for batch generation
|
1016 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1017 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1018 |
+
if past_key_values:
|
1019 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1020 |
+
else:
|
1021 |
+
position_ids = None
|
1022 |
+
|
1023 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1024 |
+
if inputs_embeds is not None and past_key_values is None:
|
1025 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1026 |
+
else:
|
1027 |
+
model_inputs = {"input_ids": input_ids}
|
1028 |
+
|
1029 |
+
model_inputs.update(
|
1030 |
+
{
|
1031 |
+
"past_key_values": past_key_values,
|
1032 |
+
"use_cache": kwargs.get("use_cache"),
|
1033 |
+
"position_ids": position_ids,
|
1034 |
+
"attention_mask": attention_mask,
|
1035 |
+
}
|
1036 |
+
)
|
1037 |
+
return model_inputs
|
1038 |
+
|
1039 |
+
|
1040 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralForSequenceClassification with Mistral -> Phi3Small
|
1041 |
+
class Phi3SmallForSequenceClassification(Phi3SmallPreTrainedModel):
|
1042 |
+
def __init__(self, config):
|
1043 |
+
super().__init__(config)
|
1044 |
+
self.num_labels = config.num_labels
|
1045 |
+
self.model = Phi3SmallModel(config)
|
1046 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1047 |
+
|
1048 |
+
# Initialize weights and apply final processing
|
1049 |
+
self.post_init()
|
1050 |
+
|
1051 |
+
def get_input_embeddings(self):
|
1052 |
+
return self.model.embed_tokens
|
1053 |
+
|
1054 |
+
def set_input_embeddings(self, value):
|
1055 |
+
self.model.embed_tokens = value
|
1056 |
+
|
1057 |
+
|
1058 |
+
def forward(
|
1059 |
+
self,
|
1060 |
+
input_ids: torch.LongTensor = None,
|
1061 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1062 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1063 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1064 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1065 |
+
labels: Optional[torch.LongTensor] = None,
|
1066 |
+
use_cache: Optional[bool] = None,
|
1067 |
+
output_attentions: Optional[bool] = None,
|
1068 |
+
output_hidden_states: Optional[bool] = None,
|
1069 |
+
return_dict: Optional[bool] = None,
|
1070 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1071 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1072 |
+
|
1073 |
+
transformer_outputs = self.model(
|
1074 |
+
input_ids,
|
1075 |
+
attention_mask=attention_mask,
|
1076 |
+
position_ids=position_ids,
|
1077 |
+
past_key_values=past_key_values,
|
1078 |
+
inputs_embeds=inputs_embeds,
|
1079 |
+
use_cache=use_cache,
|
1080 |
+
output_attentions=output_attentions,
|
1081 |
+
output_hidden_states=output_hidden_states,
|
1082 |
+
return_dict=return_dict,
|
1083 |
+
)
|
1084 |
+
hidden_states = transformer_outputs[0]
|
1085 |
+
logits = self.score(hidden_states)
|
1086 |
+
|
1087 |
+
if input_ids is not None:
|
1088 |
+
batch_size = input_ids.shape[0]
|
1089 |
+
else:
|
1090 |
+
batch_size = inputs_embeds.shape[0]
|
1091 |
+
|
1092 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1093 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1094 |
+
if self.config.pad_token_id is None:
|
1095 |
+
sequence_lengths = -1
|
1096 |
+
else:
|
1097 |
+
if input_ids is not None:
|
1098 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1099 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1100 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1101 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1102 |
+
else:
|
1103 |
+
sequence_lengths = -1
|
1104 |
+
|
1105 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1106 |
+
|
1107 |
+
loss = None
|
1108 |
+
if labels is not None:
|
1109 |
+
labels = labels.to(logits.device)
|
1110 |
+
if self.config.problem_type is None:
|
1111 |
+
if self.num_labels == 1:
|
1112 |
+
self.config.problem_type = "regression"
|
1113 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1114 |
+
self.config.problem_type = "single_label_classification"
|
1115 |
+
else:
|
1116 |
+
self.config.problem_type = "multi_label_classification"
|
1117 |
+
|
1118 |
+
if self.config.problem_type == "regression":
|
1119 |
+
loss_fct = nn.MSELoss()
|
1120 |
+
if self.num_labels == 1:
|
1121 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1122 |
+
else:
|
1123 |
+
loss = loss_fct(pooled_logits, labels)
|
1124 |
+
elif self.config.problem_type == "single_label_classification":
|
1125 |
+
loss_fct = nn.CrossEntropyLoss()
|
1126 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1127 |
+
elif self.config.problem_type == "multi_label_classification":
|
1128 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
1129 |
+
loss = loss_fct(pooled_logits, labels)
|
1130 |
+
if not return_dict:
|
1131 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1132 |
+
return ((loss,) + output) if loss is not None else output
|
1133 |
+
|
1134 |
+
return SequenceClassifierOutputWithPast(
|
1135 |
+
loss=loss,
|
1136 |
+
logits=pooled_logits,
|
1137 |
+
past_key_values=transformer_outputs.past_key_values,
|
1138 |
+
hidden_states=transformer_outputs.hidden_states,
|
1139 |
+
attentions=transformer_outputs.attentions,
|
1140 |
+
)
|
positional_embedding.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Orginally Taken verbatim from xformers library
|
3 |
+
https://github.com/facebookresearch/xformers/blob/bcb707576c6a80eaf850aa80e8643d3497ec2bc4/xformers/components/positional_embedding/rotary.py
|
4 |
+
|
5 |
+
The difference is that xformers seems to assume the inputs to be
|
6 |
+
(bs, head, seq_len, dim) while we assume (bs, seq_len, head, dim)
|
7 |
+
|
8 |
+
"""
|
9 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
10 |
+
#
|
11 |
+
# This source code is licensed under the BSD license found in the
|
12 |
+
# LICENSE file in the root directory of this source tree.
|
13 |
+
|
14 |
+
|
15 |
+
# CREDITS: This implementation is inspired by GPT-NeoX https://github.com/EleutherAI/gpt-neox
|
16 |
+
# NOTE: Almost the same right now, moving parts to Triton is the next step
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import List, Optional, Tuple, Dict, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import dataclasses
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
from transformers import PretrainedConfig
|
26 |
+
|
27 |
+
is_dacite_available = False
|
28 |
+
try:
|
29 |
+
import dacite
|
30 |
+
is_dacite_available = True
|
31 |
+
except ImportError:
|
32 |
+
pass
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
@dataclasses.dataclass
|
37 |
+
class LongRopeConfig(object):
|
38 |
+
short_factor: List[float]
|
39 |
+
long_factor: List[float]
|
40 |
+
original_max_position_embeddings: int
|
41 |
+
type: str = "longrope"
|
42 |
+
short_mscale: float = -1
|
43 |
+
long_mscale: float = -1
|
44 |
+
|
45 |
+
|
46 |
+
def __post_init__(self):
|
47 |
+
assert self.type in ("longrope", "su"), f"Invalid type {self.type} for LongRopeConfig. Expected longrope / su"
|
48 |
+
|
49 |
+
|
50 |
+
@classmethod
|
51 |
+
def from_dict(cls, config_dict: Dict[str, Union[float, List[float], int]]) -> "LongRopeConfig":
|
52 |
+
if is_dacite_available:
|
53 |
+
# Preferred since we can also type check the input
|
54 |
+
return dacite.from_dict(data_class=cls, data=config_dict)
|
55 |
+
kwargs = {}
|
56 |
+
for field in dataclasses.fields(cls):
|
57 |
+
if field.name in config_dict:
|
58 |
+
if field.init:
|
59 |
+
kwargs[field.name] = config_dict[field.name]
|
60 |
+
else:
|
61 |
+
raise ValueError(f"Field {field.name} is not initiable")
|
62 |
+
else:
|
63 |
+
if field.default is dataclasses.MISSING:
|
64 |
+
raise ValueError(f"Field {field.name} is required")
|
65 |
+
extra_keys = set(config_dict.keys()) - set(kwargs.keys())
|
66 |
+
if len(extra_keys) > 0:
|
67 |
+
for key in extra_keys:
|
68 |
+
logger.error(f"Unrecognized key {key} in config_dict")
|
69 |
+
raise ValueError(f"Unrecognized keys in config_dict")
|
70 |
+
return cls(**kwargs)
|
71 |
+
|
72 |
+
def rotate_half(x):
|
73 |
+
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
74 |
+
return torch.cat((-x2, x1), dim=x1.ndim - 1)
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
@torch.jit.script
|
79 |
+
def apply_rotary_pos_emb(x, cos, sin, seq_dimension: int):
|
80 |
+
# NOTE: This could probably be moved to Triton
|
81 |
+
|
82 |
+
if seq_dimension == 0:
|
83 |
+
cos = cos[: x.shape[0], None, None, :]
|
84 |
+
sin = sin[: x.shape[0], None, None, :]
|
85 |
+
elif seq_dimension == 1:
|
86 |
+
# Handle a possible sequence length mismatch in between q and k
|
87 |
+
cos = cos[None, : x.shape[1], None, :]
|
88 |
+
sin = sin[None, : x.shape[1], None, :]
|
89 |
+
elif seq_dimension == 2:
|
90 |
+
cos = cos[None, None, : x.shape[2], :]
|
91 |
+
sin = sin[None, None, : x.shape[2], :]
|
92 |
+
|
93 |
+
return (x * cos) + (rotate_half(x) * sin)
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
class RotaryEmbedding(torch.nn.Module):
|
98 |
+
"""
|
99 |
+
Adapted from the xformers library
|
100 |
+
|
101 |
+
The rotary position embeddings from RoFormer_ (Su et. al).
|
102 |
+
A crucial insight from the method is that the query and keys are
|
103 |
+
transformed by rotation matrices which depend on the relative positions.
|
104 |
+
Other implementations are available in the Rotary Transformer repo_ and in
|
105 |
+
GPT-NeoX_, GPT-NeoX was an inspiration
|
106 |
+
.. _RoFormer: https://arxiv.org/abs/2104.09864
|
107 |
+
.. _repo: https://github.com/ZhuiyiTechnology/roformer
|
108 |
+
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
|
109 |
+
.. warning: Please note that this embedding is not registered on purpose, as it is transformative
|
110 |
+
(it does not create the embedding dimension) and will likely be picked up (imported) on a ad-hoc basis
|
111 |
+
|
112 |
+
# Arguments
|
113 |
+
:param dim_mode: head dimention
|
114 |
+
:param max_seq_len:
|
115 |
+
:param default_seq_dimension: which dim is the sequence length
|
116 |
+
:param dtype: cos/sin dtype
|
117 |
+
:param use_fused_kernel: if to use customized fused kernel.
|
118 |
+
Note: if used, q, k will be modified inplace. Ok for both forward & backward.
|
119 |
+
"""
|
120 |
+
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
dim_model: int,
|
124 |
+
*,
|
125 |
+
max_seq_len: Optional[int] = None,
|
126 |
+
dtype: Optional[torch.dtype] = None,
|
127 |
+
base=10000,
|
128 |
+
position_scale=1,
|
129 |
+
device: Optional[torch.device] = None,
|
130 |
+
longrope_config: Optional[LongRopeConfig] = None,
|
131 |
+
):
|
132 |
+
super().__init__()
|
133 |
+
self.base = base
|
134 |
+
self.dim_model = dim_model
|
135 |
+
self.max_seq_len = max_seq_len
|
136 |
+
self.longrope_config = longrope_config
|
137 |
+
|
138 |
+
if self.is_longrope:
|
139 |
+
# Keep the maximum range vector, and slice from it as needed
|
140 |
+
self.register_buffer(
|
141 |
+
"range_vector",
|
142 |
+
torch.arange(max_seq_len, device=device, dtype=torch.float32),
|
143 |
+
persistent=False
|
144 |
+
)
|
145 |
+
self.register_buffer(
|
146 |
+
"short_factors",
|
147 |
+
torch.tensor(self.longrope_config.short_factor, dtype=torch.float32),
|
148 |
+
persistent=False
|
149 |
+
)
|
150 |
+
self.register_buffer(
|
151 |
+
"long_factors",
|
152 |
+
torch.tensor(self.longrope_config.long_factor, dtype=torch.float32),
|
153 |
+
persistent=False
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
157 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim_model, 2).float().to(device) / self.dim_model))
|
158 |
+
self.register_buffer("inv_freq", inv_freq)
|
159 |
+
|
160 |
+
self.position_scale = position_scale
|
161 |
+
|
162 |
+
if not self.is_longrope:
|
163 |
+
dtype = dtype or torch.get_default_dtype()
|
164 |
+
self._set_cos_sin_cache(
|
165 |
+
seq_len=max_seq_len,
|
166 |
+
device=self.inv_freq.device,
|
167 |
+
dtype=dtype,
|
168 |
+
)
|
169 |
+
@property
|
170 |
+
def is_longrope(self):
|
171 |
+
return self.longrope_config is not None
|
172 |
+
|
173 |
+
@property
|
174 |
+
def original_max_seq_len(self):
|
175 |
+
if self.longrope_config is not None:
|
176 |
+
return self.longrope_config.original_max_position_embeddings
|
177 |
+
logger.warning_once(
|
178 |
+
(
|
179 |
+
"``original_max_seq_len'' is being accessed, but longrope_config has not been set. "
|
180 |
+
"Please only do this if you are sure about the context."
|
181 |
+
)
|
182 |
+
)
|
183 |
+
return self.max_seq_len
|
184 |
+
|
185 |
+
def get_range_vector(self, seq_len: int, device: torch.device):
|
186 |
+
if self.is_longrope:
|
187 |
+
assert seq_len < self.range_vector.shape[0], f"Found seq_len {seq_len} greater than max_seq_len {self.range_vector.shape[0]}"
|
188 |
+
if self.range_vector.device != device:
|
189 |
+
self.range_vector = self.range_vector.to(device)
|
190 |
+
return self.range_vector[:seq_len]
|
191 |
+
return torch.arange(seq_len, device=device, dtype=torch.float32)
|
192 |
+
|
193 |
+
|
194 |
+
def _calc_mscale(self, scale: torch.Tensor) -> torch.Tensor:
|
195 |
+
if scale <= 1.0:
|
196 |
+
return 1.0
|
197 |
+
return math.sqrt(1 + math.log(scale) / math.log(self.original_max_seq_len))
|
198 |
+
|
199 |
+
def _set_cos_sin_cache(
|
200 |
+
self,
|
201 |
+
seq_len: int,
|
202 |
+
device: Optional[torch.device] = None,
|
203 |
+
dtype: Optional[torch.dtype] = None,
|
204 |
+
) -> None:
|
205 |
+
dtype = dtype or torch.get_default_dtype()
|
206 |
+
self.max_seq_len_cached = seq_len
|
207 |
+
t = (torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32) * self.position_scale).type_as(self.inv_freq)
|
208 |
+
device_type = device.type if device is not None else "cpu"
|
209 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
210 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
211 |
+
# shape: (seq_len, dim_model // 2)
|
212 |
+
freqs = torch.outer(t, self.inv_freq)
|
213 |
+
# shape: (seq_len, dim_model)
|
214 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
215 |
+
cos = emb.cos()
|
216 |
+
sin = emb.sin()
|
217 |
+
self.register_buffer("cos_cached", cos.to(dtype), persistent=False)
|
218 |
+
self.register_buffer("sin_cached", sin.to(dtype), persistent=False)
|
219 |
+
|
220 |
+
def forward(
|
221 |
+
self, q: torch.Tensor,
|
222 |
+
k: torch.Tensor,
|
223 |
+
seq_dimension: int = 1,
|
224 |
+
seqlen_offset: int = 0,
|
225 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
226 |
+
"""q, k does not include `seqlen_offset`
|
227 |
+
q: Either (bs, seq_len, num_heads, head_dim) or (seq_len, bs, num_heads, head_dim)
|
228 |
+
k: Either (bs, seq_len, num_heads, head_dim) or (seq_len, bs, num_heads, head_dim)
|
229 |
+
"""
|
230 |
+
if seq_dimension < 0:
|
231 |
+
seq_dimension = k.ndim + seq_dimension
|
232 |
+
assert seq_dimension in (0, 1, 2)
|
233 |
+
seq_len = k.shape[seq_dimension] + seqlen_offset
|
234 |
+
|
235 |
+
if self.is_longrope:
|
236 |
+
if seq_len > self.original_max_seq_len:
|
237 |
+
t = self.get_range_vector(seq_len, device=q.device)
|
238 |
+
rescale_factors = self.long_factors.to(q.device)
|
239 |
+
long_mscale = self.longrope_config.long_mscale
|
240 |
+
mscale = long_mscale if long_mscale > 0 else self._calc_mscale(self.max_seq_len / self.original_max_seq_len)
|
241 |
+
else:
|
242 |
+
t = self.get_range_vector(self.original_max_seq_len, device=q.device)
|
243 |
+
rescale_factors = self.short_factors.to(q.device)
|
244 |
+
short_mscale = self.longrope_config.short_mscale
|
245 |
+
mscale = short_mscale if short_mscale > 0 else 1.0
|
246 |
+
assert rescale_factors.shape == (self.dim_model // 2, ), (
|
247 |
+
f"misaligned shape for LongRoPE rescale factors:\n"
|
248 |
+
f"\tExpected {(self.dim_model // 2, )}, got {rescale_factors.shape}."
|
249 |
+
)
|
250 |
+
inv_freq = 1.0 / (rescale_factors * (self.base ** (torch.arange(0, self.dim_model, 2).float().to(q.device) / self.dim_model)))
|
251 |
+
device_type = q.device.type if q.device is not None else "cpu"
|
252 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
253 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
254 |
+
freqs = torch.outer(t, inv_freq)
|
255 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
256 |
+
cos = emb.cos() * mscale
|
257 |
+
sin = emb.sin() * mscale
|
258 |
+
cos_cached = cos.to(q.dtype)
|
259 |
+
sin_cached = sin.to(q.dtype)
|
260 |
+
else:
|
261 |
+
if seq_len > self.max_seq_len_cached:
|
262 |
+
self._set_cos_sin_cache(
|
263 |
+
seq_len=seq_len,
|
264 |
+
device=k.device,
|
265 |
+
dtype=k.dtype,
|
266 |
+
)
|
267 |
+
cos_cached = self.cos_cached
|
268 |
+
sin_cached = self.sin_cached
|
269 |
+
return (
|
270 |
+
apply_rotary_pos_emb(
|
271 |
+
q, cos_cached[seqlen_offset:seq_len], sin_cached[seqlen_offset:seq_len], seq_dimension=seq_dimension
|
272 |
+
).to(q.dtype),
|
273 |
+
apply_rotary_pos_emb(
|
274 |
+
k, cos_cached[seqlen_offset:seq_len], sin_cached[seqlen_offset:seq_len], seq_dimension=seq_dimension
|
275 |
+
).to(k.dtype),
|
276 |
+
)
|
277 |
+
|
278 |
+
@classmethod
|
279 |
+
def from_config(cls, config: PretrainedConfig) -> "RotaryEmbedding":
|
280 |
+
kwargs = dict(
|
281 |
+
dim_model=config.hidden_size // config.num_attention_heads,
|
282 |
+
max_seq_len=config.max_position_embeddings,
|
283 |
+
base=config.rope_embedding_base,
|
284 |
+
position_scale=config.rope_position_scale,
|
285 |
+
)
|
286 |
+
if config.rope_scaling is not None:
|
287 |
+
kwargs["longrope_config"] = LongRopeConfig.from_dict(config.rope_scaling)
|
288 |
+
return cls(**kwargs)
|
tokenization_phi3_small.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/tokenization_qwen.py
|
2 |
+
import os
|
3 |
+
from typing import Collection, List, Optional, Dict, Set, Tuple, Union
|
4 |
+
|
5 |
+
from functools import cached_property
|
6 |
+
|
7 |
+
import base64
|
8 |
+
|
9 |
+
from transformers import PreTrainedTokenizer, AddedToken, AutoConfig
|
10 |
+
from transformers.models.auto.tokenization_auto import get_tokenizer_config
|
11 |
+
import tiktoken
|
12 |
+
|
13 |
+
|
14 |
+
"""
|
15 |
+
This tokenizer is almost identical to tiktoken.get_encoding("cl100k_base")
|
16 |
+
with a few additional special tokens to support the ChatML format.
|
17 |
+
|
18 |
+
TODO(bapatra): Right now, I do not save the special tokens to the vocab file.
|
19 |
+
Maybe in the future, that would be useful? Can add that support later.
|
20 |
+
|
21 |
+
"""
|
22 |
+
|
23 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
24 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
25 |
+
contents = f.read()
|
26 |
+
return {
|
27 |
+
base64.b64decode(token): int(rank)
|
28 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
29 |
+
}
|
30 |
+
|
31 |
+
# On the megatron codebase, we pad vocabularies to ensure matrix multiplication is fast.
|
32 |
+
# this in turn causes some indices to be empty. We account for these empty indices by adding
|
33 |
+
# dummy tokens to the tokenizer.
|
34 |
+
|
35 |
+
EFFECTIVE_PADDED_VOCAB_SIZE = 100352
|
36 |
+
ACTUAL_VOCAB_SIZE = 100276
|
37 |
+
|
38 |
+
|
39 |
+
DUMMY_TOKENS = {
|
40 |
+
f"<|dummy_id_{11 + offset}|>": 100276 + offset
|
41 |
+
for offset in range(1, EFFECTIVE_PADDED_VOCAB_SIZE - ACTUAL_VOCAB_SIZE)
|
42 |
+
}
|
43 |
+
|
44 |
+
SPECIAL_TOKENS = {
|
45 |
+
# tiktoken.get_encoding("cl100k_base")._special_tokens
|
46 |
+
'<|endoftext|>': 100257,
|
47 |
+
'<|fim_prefix|>': 100258,
|
48 |
+
'<|fim_middle|>': 100259,
|
49 |
+
'<|fim_suffix|>': 100260,
|
50 |
+
# Special tokens for post-training
|
51 |
+
"<|system|>": 100261,
|
52 |
+
"<|user|>": 100262,
|
53 |
+
"<|assistant|>": 100263,
|
54 |
+
# Dummy unused tokens
|
55 |
+
"<|dummy_id_0|>": 100264,
|
56 |
+
"<|dummy_id_1|>": 100265,
|
57 |
+
# Special tokens for post-training continued
|
58 |
+
"<|end|>": 100266,
|
59 |
+
# Some dummy tokens, so that tokenization is contiguous and does not cause issues
|
60 |
+
# Note that the 100256th token of tiktoken.get_encoding("cl100k_base") does not
|
61 |
+
# actually map to anything. So we use a dummy token here.
|
62 |
+
"<|dummy_id_2|>": 100256,
|
63 |
+
# Likewise, tokens from 100267 to 100275 are also unused
|
64 |
+
"<|dummy_id_3|>": 100267,
|
65 |
+
"<|dummy_id_4|>": 100268,
|
66 |
+
"<|dummy_id_5|>": 100269,
|
67 |
+
"<|dummy_id_6|>": 100270,
|
68 |
+
"<|dummy_id_7|>": 100271,
|
69 |
+
"<|dummy_id_8|>": 100272,
|
70 |
+
"<|dummy_id_9|>": 100273,
|
71 |
+
"<|dummy_id_10|>": 100274,
|
72 |
+
"<|dummy_id_11|>": 100275,
|
73 |
+
# The final end of prompt token
|
74 |
+
# (unused, but present as a part of tiktoken.get_encoding("cl100k_base")._special_tokens)
|
75 |
+
'<|endofprompt|>': 100276,
|
76 |
+
# Dummy tokens to account for padding of the tokenizer
|
77 |
+
# We pad to ensure tensor cores are used for vocab multiplication
|
78 |
+
**DUMMY_TOKENS
|
79 |
+
}
|
80 |
+
|
81 |
+
class Phi3SmallTokenizer(PreTrainedTokenizer):
|
82 |
+
vocab_files_names = {
|
83 |
+
"vocab_file": "cl100k_base.tiktoken"
|
84 |
+
}
|
85 |
+
|
86 |
+
model_input_names: List[str] = ["input_ids", "attention_mask"]
|
87 |
+
padding_side = "left"
|
88 |
+
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
vocab_file: Optional[str] = None,
|
92 |
+
errors: str = "replace",
|
93 |
+
**kwargs
|
94 |
+
) -> None:
|
95 |
+
# PreTrainedTokenizer's init calls _add_tokens, which in turn checks
|
96 |
+
# if the token is present in `self.special_tokens``. Hence instantiating it here.
|
97 |
+
# The way Qwen gets around this is by checking against SPECIAL_TOKENS
|
98 |
+
# But I think it's better to check against the objects own `special_tokens`
|
99 |
+
# in case we eventually want to allow the tokenizer to have special tokens.
|
100 |
+
self.special_tokens = SPECIAL_TOKENS
|
101 |
+
|
102 |
+
super().__init__(**kwargs)
|
103 |
+
self.errors = errors
|
104 |
+
|
105 |
+
base = tiktoken.get_encoding("cl100k_base")
|
106 |
+
if vocab_file is None:
|
107 |
+
self.mergeable_ranks: Dict[bytes, int] = base._mergeable_ranks
|
108 |
+
else:
|
109 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file)
|
110 |
+
|
111 |
+
self.pat_str = base._pat_str
|
112 |
+
|
113 |
+
enc = tiktoken.Encoding(
|
114 |
+
name="phi3small",
|
115 |
+
pat_str=self.pat_str,
|
116 |
+
mergeable_ranks=self.mergeable_ranks,
|
117 |
+
special_tokens=self.special_tokens,
|
118 |
+
)
|
119 |
+
self.tokenizer = enc
|
120 |
+
|
121 |
+
self.decoder: Dict[int, bytes] = {
|
122 |
+
v: k for k, v in self.mergeable_ranks.items()
|
123 |
+
}
|
124 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
125 |
+
|
126 |
+
self.eod_id = self.tokenizer.eot_token
|
127 |
+
self._eos_token = self._convert_id_to_token(self.eod_id)
|
128 |
+
|
129 |
+
# Setting the bos_token to be the same as the eos_token
|
130 |
+
# Note that this is **not** the correct thing to do, and is done
|
131 |
+
# just so that some of the downstream libraries do not break.
|
132 |
+
self._bos_token = self._eos_token
|
133 |
+
|
134 |
+
# Assign the special tokens to class variables
|
135 |
+
self.system_id = self.special_tokens["<|system|>"]
|
136 |
+
self.user_id = self.special_tokens["<|user|>"]
|
137 |
+
self.assistant_id = self.special_tokens["<|assistant|>"]
|
138 |
+
self.end_id = self.special_tokens["<|end|>"]
|
139 |
+
|
140 |
+
@cached_property
|
141 |
+
def dummy_token_indices(self) -> List[int]:
|
142 |
+
# There are some additional special tokens in the cl100k_base tokenizer
|
143 |
+
# that we do not use. Hence, we also consider them to be dummy tokens.
|
144 |
+
additional_tokens = [
|
145 |
+
"<|fim_prefix|>",
|
146 |
+
"<|fim_middle|>",
|
147 |
+
"<|fim_suffix|>",
|
148 |
+
"<|endofprompt|>"
|
149 |
+
]
|
150 |
+
dummy_token_indices = [index for token, index in self.special_tokens.items() if "dummy_id" in token]
|
151 |
+
dummy_token_indices.extend([self.special_tokens[token] for token in additional_tokens])
|
152 |
+
return sorted(dummy_token_indices)
|
153 |
+
|
154 |
+
def __getstate__(self):
|
155 |
+
state = self.__dict__.copy()
|
156 |
+
del state["tokenizer"]
|
157 |
+
return state
|
158 |
+
|
159 |
+
def __setstate__(self, state):
|
160 |
+
self.__dict__ = state
|
161 |
+
enc = tiktoken.Encoding(
|
162 |
+
name="cl100k_im",
|
163 |
+
pat_str=self.pat_str,
|
164 |
+
mergeable_ranks=self.mergeable_ranks,
|
165 |
+
special_tokens=self.special_tokens,
|
166 |
+
)
|
167 |
+
self.tokenizer = enc
|
168 |
+
|
169 |
+
def __len__(self):
|
170 |
+
return self.tokenizer.n_vocab
|
171 |
+
|
172 |
+
@classmethod
|
173 |
+
def from_pretrained(
|
174 |
+
cls,
|
175 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
176 |
+
*init_inputs,
|
177 |
+
**kwargs,
|
178 |
+
):
|
179 |
+
cls_kwargs = kwargs
|
180 |
+
# First try to load from the tokenization config if it exists
|
181 |
+
tokenization_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
|
182 |
+
if tokenization_config:
|
183 |
+
cls_kwargs = {
|
184 |
+
**tokenization_config,
|
185 |
+
**cls_kwargs
|
186 |
+
}
|
187 |
+
else:
|
188 |
+
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
|
189 |
+
cls_kwargs["model_max_length"] = config.max_position_embeddings
|
190 |
+
return cls(**cls_kwargs)
|
191 |
+
|
192 |
+
def get_vocab(self) -> Dict[Union[str, bytes], int]:
|
193 |
+
return {**self.mergeable_ranks, **self.special_tokens}
|
194 |
+
|
195 |
+
def convert_tokens_to_ids(
|
196 |
+
self,
|
197 |
+
tokens: Union[bytes, str, List[Union[bytes, str]]]
|
198 |
+
) -> Union[int, List[int]]:
|
199 |
+
ids = []
|
200 |
+
if isinstance(tokens, (str, bytes)):
|
201 |
+
if tokens in self.special_tokens:
|
202 |
+
return self.special_tokens[tokens]
|
203 |
+
else:
|
204 |
+
return self.mergeable_ranks.get(tokens)
|
205 |
+
ids: List[int] = []
|
206 |
+
for token in tokens:
|
207 |
+
ids.append(self.convert_tokens_to_ids(token))
|
208 |
+
return ids
|
209 |
+
|
210 |
+
def _add_tokens(
|
211 |
+
self,
|
212 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
213 |
+
special_tokens: bool = False,
|
214 |
+
) -> int:
|
215 |
+
if not special_tokens and new_tokens:
|
216 |
+
raise ValueError("Only special tokens can be added to this tokenizer")
|
217 |
+
for token in new_tokens:
|
218 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
219 |
+
if surface_form not in self.special_tokens:
|
220 |
+
raise ValueError(
|
221 |
+
"For now, we do not support unknown special tokens\n"
|
222 |
+
"In the future, if there is a need for this, we can add special tokens to the tokenizer\n"
|
223 |
+
"starting from rank 100261 - 100263 and then 100266 - 100275.\n"
|
224 |
+
"And finally, we can re-construct the enc object back\n"
|
225 |
+
)
|
226 |
+
return 0
|
227 |
+
|
228 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
229 |
+
file_path = os.path.join(save_directory, "cl100k_base.tiktoken")
|
230 |
+
with open(file_path, "w") as f:
|
231 |
+
for token, rank in self.mergeable_ranks.items():
|
232 |
+
line = base64.b64encode(token).decode("utf-8") + " " + str(rank) + "\n"
|
233 |
+
f.write(line)
|
234 |
+
return (file_path,)
|
235 |
+
|
236 |
+
def tokenize(
|
237 |
+
self,
|
238 |
+
text: str,
|
239 |
+
allowed_special: Union[Set, str] = "all",
|
240 |
+
disallowed_special: Union[Collection, str] = (),
|
241 |
+
**kwargs
|
242 |
+
) -> List[Union[bytes, str]]:
|
243 |
+
tokens: List[Union[bytes, str]] = []
|
244 |
+
for token_id in self.tokenizer.encode(
|
245 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
246 |
+
):
|
247 |
+
tokens.append(self.decoder[token_id])
|
248 |
+
return tokens
|
249 |
+
|
250 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
251 |
+
"""
|
252 |
+
Converts a sequence of tokens in a single string.
|
253 |
+
"""
|
254 |
+
text = ""
|
255 |
+
temp = b""
|
256 |
+
for t in tokens:
|
257 |
+
if isinstance(t, str):
|
258 |
+
if temp:
|
259 |
+
text += temp.decode("utf-8", errors=self.errors)
|
260 |
+
temp = b""
|
261 |
+
text += t
|
262 |
+
elif isinstance(t, bytes):
|
263 |
+
temp += t
|
264 |
+
else:
|
265 |
+
raise TypeError("token should only be of type types or str")
|
266 |
+
if temp:
|
267 |
+
text += temp.decode("utf-8", errors=self.errors)
|
268 |
+
return text
|
269 |
+
|
270 |
+
@property
|
271 |
+
def vocab_size(self):
|
272 |
+
return self.tokenizer.n_vocab
|
273 |
+
|
274 |
+
@property
|
275 |
+
def eos_token_id(self) -> int:
|
276 |
+
return self.eod_id
|
277 |
+
|
278 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
279 |
+
"""Converts an id to a token, special tokens included"""
|
280 |
+
if index in self.decoder:
|
281 |
+
return self.decoder[index]
|
282 |
+
raise ValueError("unknown ids")
|
283 |
+
|
284 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
285 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
286 |
+
if token in self.special_tokens:
|
287 |
+
return self.special_tokens[token]
|
288 |
+
if token in self.mergeable_ranks:
|
289 |
+
return self.mergeable_ranks[token]
|
290 |
+
raise ValueError("unknown token")
|
291 |
+
|
292 |
+
def _tokenize(self, text: str, **kwargs):
|
293 |
+
"""
|
294 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
295 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
296 |
+
Do NOT take care of added tokens.
|
297 |
+
"""
|
298 |
+
raise NotImplementedError
|
299 |
+
|
300 |
+
def _decode(
|
301 |
+
self,
|
302 |
+
token_ids: Union[int, List[int]],
|
303 |
+
skip_special_tokens: bool = False,
|
304 |
+
errors: str = None,
|
305 |
+
**kwargs,
|
306 |
+
) -> str:
|
307 |
+
if isinstance(token_ids, int):
|
308 |
+
token_ids = [token_ids]
|
309 |
+
if skip_special_tokens:
|
310 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
311 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
312 |
+
|
313 |
+
|
triton_blocksparse_attention_layer.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Optional, Tuple, TypeVar
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch
|
5 |
+
import triton
|
6 |
+
|
7 |
+
from functools import lru_cache
|
8 |
+
|
9 |
+
|
10 |
+
from .triton_flash_blocksparse_attn import get_local_strided_sparse_attention_op, _get_sparse_attn_mask, blocksparse_flash_attn_padded_fwd, blocksparse_flash_attn_varlen_fwd
|
11 |
+
|
12 |
+
|
13 |
+
Layout = Tuple[torch.LongTensor, torch.LongTensor]
|
14 |
+
|
15 |
+
|
16 |
+
def create_sparse_attn_mask(
|
17 |
+
n_heads: int,
|
18 |
+
max_seq_len: int,
|
19 |
+
max_seq_len_k: int,
|
20 |
+
dtype: torch.dtype,
|
21 |
+
device: torch.device,
|
22 |
+
BLOCK: int,
|
23 |
+
local_blocks: int,
|
24 |
+
vert_stride: int,
|
25 |
+
homo_head: bool,
|
26 |
+
return_dense: bool
|
27 |
+
) -> Tuple[Layout, torch.Tensor, Optional[torch.Tensor]]:
|
28 |
+
layout, block_sparse_pattern, _ = _get_sparse_attn_mask(
|
29 |
+
n_heads=n_heads,
|
30 |
+
q_len=max_seq_len,
|
31 |
+
N_CTX=max_seq_len_k,
|
32 |
+
dtype=dtype,
|
33 |
+
device=device,
|
34 |
+
BLOCK=BLOCK,
|
35 |
+
local_blocks=local_blocks,
|
36 |
+
vert_stride=vert_stride,
|
37 |
+
homo_head=homo_head,
|
38 |
+
return_dense=return_dense
|
39 |
+
)
|
40 |
+
return layout, block_sparse_pattern
|
41 |
+
|
42 |
+
|
43 |
+
class BlockSparseAttentionLayer(nn.Module):
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
n_heads: int,
|
47 |
+
max_seq_len: int,
|
48 |
+
sparse_block_size: int,
|
49 |
+
local_blocks: int,
|
50 |
+
vert_stride: int,
|
51 |
+
kernel_block_size: Optional[int] = None,
|
52 |
+
homo_head: bool = False,
|
53 |
+
active_head_range: Optional[Tuple[int]] = None
|
54 |
+
) -> None:
|
55 |
+
super().__init__()
|
56 |
+
|
57 |
+
self.n_heads = n_heads
|
58 |
+
self.max_seq_len = max_seq_len
|
59 |
+
self.sparse_block_size = sparse_block_size
|
60 |
+
self.kernel_block_size = kernel_block_size or sparse_block_size
|
61 |
+
self.local_blocks = local_blocks
|
62 |
+
self.vert_stride = vert_stride
|
63 |
+
self.homo_head = homo_head
|
64 |
+
self.active_head_range = active_head_range
|
65 |
+
|
66 |
+
# Internal Parameters used by the layer
|
67 |
+
self._sparse_block_mask = None
|
68 |
+
self._sparse_layout = None
|
69 |
+
self._dtype = None
|
70 |
+
self._device = None
|
71 |
+
|
72 |
+
# TODO(bapatra): Ideally, I'd want to keep all the code for
|
73 |
+
# forward to be handled here, and not branch for training and inference.
|
74 |
+
# However, that refactor would need a lot of testing. For now, using the
|
75 |
+
# training op as is, and will refactor again later.
|
76 |
+
|
77 |
+
def prune_blocksparse_layout_to_heads(self, h_start: int, h_end: int) -> None:
|
78 |
+
self._sparse_block_mask = self._sparse_block_mask[h_start: h_end]
|
79 |
+
self._sparse_layout[0] = self._sparse_layout[0][h_start: h_end]
|
80 |
+
self._sparse_layout[1] = self._sparse_layout[1][h_start: h_end]
|
81 |
+
|
82 |
+
def _initialize_internals(
|
83 |
+
self,
|
84 |
+
dtype: torch.dtype,
|
85 |
+
device: torch.device
|
86 |
+
) -> None:
|
87 |
+
self._dtype, self._device = dtype, device
|
88 |
+
self._sparse_layout, self._sparse_block_mask = create_sparse_attn_mask(
|
89 |
+
n_heads=self.n_heads,
|
90 |
+
max_seq_len=self.max_seq_len,
|
91 |
+
max_seq_len_k=self.max_seq_len,
|
92 |
+
dtype=dtype,
|
93 |
+
device=device,
|
94 |
+
BLOCK=self.sparse_block_size,
|
95 |
+
local_blocks=self.local_blocks,
|
96 |
+
vert_stride=self.vert_stride,
|
97 |
+
homo_head=self.homo_head,
|
98 |
+
return_dense=False,
|
99 |
+
)
|
100 |
+
if (not self.homo_head) and (self.active_head_range is not None):
|
101 |
+
assert len(self.active_head_range) == 2, "\"active_head_range\" should be a tuple of start/end index of the heads."
|
102 |
+
h_start, h_end = self.active_head_range
|
103 |
+
self.prune_blocksparse_layout_to_heads(h_start=h_start, h_end=h_end)
|
104 |
+
|
105 |
+
assert self.sparse_block_size % self.kernel_block_size == 0, f"The sparse block size must be a multiple of {self.kernel_block_size}. Found {self.sparse_block_size}."
|
106 |
+
assert self.kernel_block_size >=16 and math.log2(self.kernel_block_size) % 1 == 0, f"block_size must be power of 2 and at least 16, but {self.kernel_block_size} is given"
|
107 |
+
if self.sparse_block_size // self.kernel_block_size > 1:
|
108 |
+
_mul = self.sparse_block_size // self.kernel_block_size
|
109 |
+
# need to consider if block_m and block_n are different
|
110 |
+
self._sparse_block_mask = torch.kron(self._sparse_block_mask, self._sparse_block_mask.new_ones(_mul, _mul))
|
111 |
+
num_sparse_blocks = self._sparse_block_mask.size(-1)
|
112 |
+
block_causal_mask = torch.arange(0, num_sparse_blocks)[:, None] >= torch.arange(0, num_sparse_blocks)[None]
|
113 |
+
self._sparse_block_mask *= block_causal_mask.type_as(self._sparse_block_mask)
|
114 |
+
|
115 |
+
|
116 |
+
def forward(
|
117 |
+
self,
|
118 |
+
q: torch.Tensor,
|
119 |
+
k: torch.Tensor,
|
120 |
+
v: torch.Tensor,
|
121 |
+
sm_scale: float,
|
122 |
+
*,
|
123 |
+
# Arguments Related to Block Attention Inference
|
124 |
+
left_paddings: Optional[torch.LongTensor] = None,
|
125 |
+
seqlens: Optional[torch.LongTensor] = None,
|
126 |
+
# Arguements Related to Variable Length Inference
|
127 |
+
cu_seqlens_k: Optional[torch.LongTensor] = None,
|
128 |
+
cu_seqlens_q: Optional[torch.LongTensor] = None,
|
129 |
+
) -> torch.Tensor:
|
130 |
+
|
131 |
+
if left_paddings is None and seqlens is None and cu_seqlens_k is None and cu_seqlens_q is None:
|
132 |
+
blocksparse_op = get_local_strided_sparse_attention_op(
|
133 |
+
n_heads=self.n_heads,
|
134 |
+
max_seq_len=self.max_seq_len,
|
135 |
+
sparse_block_size=self.sparse_block_size,
|
136 |
+
kernel_block_size=self.kernel_block_size,
|
137 |
+
local_blocks=self.local_blocks,
|
138 |
+
vert_stride=self.vert_stride,
|
139 |
+
homo_head=self.homo_head,
|
140 |
+
device=q.device,
|
141 |
+
inference=not self.training
|
142 |
+
)
|
143 |
+
return blocksparse_op(q, k, v, sm_scale)
|
144 |
+
|
145 |
+
assert not torch.is_grad_enabled(), "Variable Length Inference / Batched inference is not supported during training. Please run it in a torch.no_grad() context"
|
146 |
+
# First set internals if they have not been set
|
147 |
+
if self._sparse_block_mask is None or (self._dtype != q.dtype) or (self._device != q.device):
|
148 |
+
self._initialize_internals(dtype=q.dtype, device=q.device)
|
149 |
+
|
150 |
+
if k.dim() == 3:
|
151 |
+
assert cu_seqlens_k is not None
|
152 |
+
return blocksparse_flash_attn_varlen_fwd(
|
153 |
+
q=q,
|
154 |
+
k=k,
|
155 |
+
v=v,
|
156 |
+
cu_seqlens_k=cu_seqlens_k,
|
157 |
+
cu_seqlens_q=cu_seqlens_q,
|
158 |
+
sm_scale=sm_scale,
|
159 |
+
sparse_layout=self._sparse_layout,
|
160 |
+
block_size=self.kernel_block_size,
|
161 |
+
max_seqlen=self.max_seq_len,
|
162 |
+
)
|
163 |
+
if k.dim() == 4:
|
164 |
+
assert not (left_paddings is None and seqlens is None), "Either left_paddings or seqlens must be provided for batched inference."
|
165 |
+
return blocksparse_flash_attn_padded_fwd(
|
166 |
+
q=q,
|
167 |
+
k=k,
|
168 |
+
v=v,
|
169 |
+
sm_scale=sm_scale,
|
170 |
+
sparse_layout=self._sparse_layout,
|
171 |
+
left_paddings=left_paddings,
|
172 |
+
seqlens=seqlens,
|
173 |
+
block_size=self.kernel_block_size,
|
174 |
+
max_seqlen=self.max_seq_len,
|
175 |
+
)
|
176 |
+
raise ValueError('q/k/v must be either 3 dim for variable-length input or 4 dim for fixed-length.')
|
triton_flash_blocksparse_attn.py
ADDED
@@ -0,0 +1,1943 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Author: Eric Lin (xihlin)
|
3 |
+
"""
|
4 |
+
"""
|
5 |
+
... note(bapatra)::
|
6 |
+
This is written as one big file, instead of splitting into logical components because I was running into issues with transformers auto module
|
7 |
+
imports when splitting into different files. I've tried keeping the logical partitions demarkated with comment blocks, but it is not ideal.
|
8 |
+
In the future, would be really good to revisit this and refactor into a more readable file structure.
|
9 |
+
|
10 |
+
"""
|
11 |
+
from typing import TypeVar
|
12 |
+
from functools import lru_cache
|
13 |
+
import math
|
14 |
+
import pytest
|
15 |
+
import torch
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
import triton
|
19 |
+
import triton.language as tl
|
20 |
+
|
21 |
+
import os
|
22 |
+
|
23 |
+
import dataclasses
|
24 |
+
|
25 |
+
Phi3SmallConfig = TypeVar('Phi3SmallConfig')
|
26 |
+
|
27 |
+
# triton 2.0.0: fail at backward on A100, for the examples, if h_dim=128.
|
28 |
+
|
29 |
+
# Done
|
30 |
+
# 1. strided of qkv
|
31 |
+
# 2. seq len not power of 2
|
32 |
+
# 3. bf16 with Triton May, 2023
|
33 |
+
|
34 |
+
# TODO:
|
35 |
+
# 1. wip: support non-contiguous backward, also help reduce memory allocation in training (q, k, v split)
|
36 |
+
# 2. block sparse with different BLOCK_M, BLOCK_N?
|
37 |
+
# 3. for Lq not divided by BLOCK_M, BLOCK_N, only apply mask to K/V on last batch, still need to apply mask on Q.
|
38 |
+
# Attempt, fail to compile
|
39 |
+
# 4. For 2nd iter of inference, BLOCK_M=1, how to make things work? K/V maynot divided by BLOCK_N.
|
40 |
+
# 5. The inner loop can also be paralled via bigger num_stage(better) or on different thread-block (via m/L and atomic update, but this no-comm/sync between blocks)
|
41 |
+
|
42 |
+
|
43 |
+
###########################################################
|
44 |
+
################### Kernel Parameters #####################
|
45 |
+
###########################################################
|
46 |
+
|
47 |
+
@dataclasses.dataclass
|
48 |
+
class BlockSparseParams(object):
|
49 |
+
block_size: int
|
50 |
+
kernel_block_size: int
|
51 |
+
num_local_blocks: int
|
52 |
+
vert_stride: int
|
53 |
+
homo_head_pattern: bool = False
|
54 |
+
|
55 |
+
@classmethod
|
56 |
+
def from_config(cls, config: Phi3SmallConfig) -> "BlockSparseParams":
|
57 |
+
return cls(
|
58 |
+
block_size=config.blocksparse_block_size,
|
59 |
+
kernel_block_size=config.blocksparse_triton_kernel_block_size,
|
60 |
+
num_local_blocks=config.blocksparse_num_local_blocks,
|
61 |
+
vert_stride=config.blocksparse_vert_stride,
|
62 |
+
homo_head_pattern=config.blocksparse_homo_head_pattern,
|
63 |
+
)
|
64 |
+
|
65 |
+
|
66 |
+
###########################################################
|
67 |
+
###########################################################
|
68 |
+
|
69 |
+
###########################################################
|
70 |
+
################### Utility Functions #####################
|
71 |
+
###########################################################
|
72 |
+
|
73 |
+
# helper functions for 3D sparse pattern
|
74 |
+
# these function are not optimized and very inefficient. Avoid calling them too frequent.
|
75 |
+
# currently, it is only called within `get_local_strided_sparse_attention_op`, which is cached.
|
76 |
+
def dense_to_crow_col(x):
|
77 |
+
''' Turning a 2D/3D torch tensor (x) to CSR rows/cols indexing.
|
78 |
+
param:
|
79 |
+
TODO:
|
80 |
+
1. improve efficiency, is it faster if done in CPU, or customize a cuda kernel for it?
|
81 |
+
NOTE: col_indices padded -1
|
82 |
+
'''
|
83 |
+
pad = -1
|
84 |
+
dim = x.dim()
|
85 |
+
assert x.dim() in (2, 3)
|
86 |
+
if x.dim() == 2:
|
87 |
+
x = x[None]
|
88 |
+
x = [xi.to_sparse_csr() for xi in x]
|
89 |
+
crows = torch.vstack([xi.crow_indices() for xi in x])
|
90 |
+
cols = [xi.col_indices() for xi in x]
|
91 |
+
max_cols = max(len(xi) for xi in cols)
|
92 |
+
cols = [torch.cat([xi, pad + xi.new_zeros(max_cols - xi.shape[0])]) for xi in cols]
|
93 |
+
cols = torch.vstack(cols)
|
94 |
+
if dim == 2:
|
95 |
+
crows = crows[0]
|
96 |
+
cols = cols[0]
|
97 |
+
return crows, cols
|
98 |
+
|
99 |
+
|
100 |
+
def crow_col_to_dense(crows, cols, dtype=torch.float16):
|
101 |
+
dim = crows.dim()
|
102 |
+
if dim == 1:
|
103 |
+
crows = crows[None]
|
104 |
+
cols = cols[None]
|
105 |
+
device = crows.device
|
106 |
+
crows, cols = crows.cpu(), cols.cpu() # faster in cpu
|
107 |
+
shape = (crows.shape[0], crows.shape[1] - 1, cols.max() + 1)
|
108 |
+
x = torch.zeros(shape, dtype=dtype)
|
109 |
+
for i in range(shape[0]):
|
110 |
+
for j in range(shape[1]):
|
111 |
+
x[i, j, cols[i, crows[i, j]:crows[i, j+1]]] = 1
|
112 |
+
if dim == 1:
|
113 |
+
x = x[0]
|
114 |
+
return x.to(device)
|
115 |
+
|
116 |
+
|
117 |
+
def dense_to_ccol_row(x):
|
118 |
+
'''Similar, but to CSC format
|
119 |
+
'''
|
120 |
+
x = x.transpose(-2, -1)
|
121 |
+
return dense_to_crow_col(x)
|
122 |
+
|
123 |
+
|
124 |
+
def ccol_row_to_dense(ccol, rows, dtype=torch.float16):
|
125 |
+
return crow_col_to_dense(ccol, rows, dtype).permute(0, 2, 1).contiguous()
|
126 |
+
|
127 |
+
|
128 |
+
def _get_sparse_attn_mask_homo_head(q_len, N_CTX, dtype, device, BLOCK=128, local_blocks=4, vert_stride=4, return_dense=False):
|
129 |
+
'''
|
130 |
+
:return: a tuple of 3:
|
131 |
+
- tuple of crow_indices, col_indices representation of CSR format.
|
132 |
+
- block dense mask
|
133 |
+
- all token dense mask (be aware that it can be OOM if it is too big) if `return_dense==True`, otherwise, None
|
134 |
+
'''
|
135 |
+
with torch.no_grad():
|
136 |
+
N_BLOCK = triton.cdiv(N_CTX, BLOCK)
|
137 |
+
q_pos = torch.arange(N_BLOCK)[:, None]
|
138 |
+
k_pos = torch.arange(N_BLOCK)[None]
|
139 |
+
mask_vert_strided = (torch.arange(N_BLOCK) + 1) % vert_stride == 0
|
140 |
+
block_mask_dense = ((q_pos >= k_pos) & ((q_pos - k_pos < local_blocks) | mask_vert_strided)).to(device).to(dtype)
|
141 |
+
N_BLOCK_Q = triton.cdiv(q_len, BLOCK)
|
142 |
+
block_mask_dense_output = block_mask_dense[-N_BLOCK_Q:].contiguous().to_sparse_csr()
|
143 |
+
if return_dense:
|
144 |
+
mask_dense = torch.kron(block_mask_dense, block_mask_dense.new_ones((BLOCK, BLOCK)))
|
145 |
+
causal_mask = torch.tril(torch.ones(N_CTX, N_CTX)).type_as(mask_dense)[-q_len:]
|
146 |
+
mask_dense = mask_dense[-q_len:, :N_CTX] * causal_mask
|
147 |
+
return (block_mask_dense_output.crow_indices(), block_mask_dense_output.col_indices()), block_mask_dense, mask_dense
|
148 |
+
else:
|
149 |
+
return (block_mask_dense_output.crow_indices(), block_mask_dense_output.col_indices()), block_mask_dense, None
|
150 |
+
|
151 |
+
|
152 |
+
def _get_sparse_attn_mask(n_heads, q_len, N_CTX, dtype, device, BLOCK=128, local_blocks=4, vert_stride=4, homo_head=True, return_dense=False):
|
153 |
+
'''
|
154 |
+
:return: a tuple of 3:
|
155 |
+
- tuple of crow_indices, col_indices representation of CSR format.
|
156 |
+
- block dense mask
|
157 |
+
- all token dense mask (be aware that it can be OOM if it is too big) if `return_dense==True`, otherwise, None
|
158 |
+
'''
|
159 |
+
if homo_head:
|
160 |
+
with torch.no_grad():
|
161 |
+
(crow, col), block_mask_dense, mask_dense = _get_sparse_attn_mask_homo_head(q_len, N_CTX, dtype, device, BLOCK, local_blocks, vert_stride, return_dense)
|
162 |
+
crow = crow[None].expand(n_heads, crow.shape[0])
|
163 |
+
col = col[None].expand(n_heads, col.shape[0])
|
164 |
+
if return_dense:
|
165 |
+
mask_dense = mask_dense[None].expand(n_heads, *mask_dense.shape)
|
166 |
+
return (crow, col), block_mask_dense, mask_dense
|
167 |
+
|
168 |
+
with torch.no_grad():
|
169 |
+
N_BLOCK = triton.cdiv(N_CTX, BLOCK)
|
170 |
+
q_pos = torch.arange(N_BLOCK)[None, :, None]
|
171 |
+
k_pos = torch.arange(N_BLOCK)[None, None]
|
172 |
+
head_sliding_step = max(1, int(vert_stride / n_heads)) # if vert_stride <= n_heads, rotating the heads
|
173 |
+
mask_vert_strided = [(torch.arange(N_BLOCK) + h * head_sliding_step + 1) % vert_stride == 0 for h in range(n_heads)]
|
174 |
+
mask_vert_strided = torch.vstack(mask_vert_strided).unsqueeze(1)
|
175 |
+
block_mask_dense = ((q_pos >= k_pos) & ((q_pos - k_pos < local_blocks) | mask_vert_strided)).to(device).to(dtype)
|
176 |
+
N_BLOCK_Q = triton.cdiv(q_len, BLOCK)
|
177 |
+
block_mask_dense_output = block_mask_dense[:, -N_BLOCK_Q:]
|
178 |
+
if return_dense:
|
179 |
+
mask_dense = torch.kron(block_mask_dense, block_mask_dense.new_ones((BLOCK, BLOCK)))
|
180 |
+
causal_mask = torch.tril(torch.ones(N_CTX, N_CTX)).type_as(mask_dense)[-q_len:]
|
181 |
+
mask_dense = mask_dense[..., -q_len:, :N_CTX] * causal_mask[None]
|
182 |
+
return dense_to_crow_col(block_mask_dense_output), block_mask_dense, mask_dense
|
183 |
+
else:
|
184 |
+
return dense_to_crow_col(block_mask_dense_output), block_mask_dense, None
|
185 |
+
|
186 |
+
|
187 |
+
def get_sparse_attn_mask(q, N_CTX, *args, **kwargs):
|
188 |
+
return _get_sparse_attn_mask(q.size(1), q.size(2), N_CTX, q.dtype, q.device, *args, **kwargs)
|
189 |
+
|
190 |
+
###########################################################
|
191 |
+
###########################################################
|
192 |
+
|
193 |
+
###########################################################
|
194 |
+
###################### Training Kernels ###################
|
195 |
+
###########################################################
|
196 |
+
|
197 |
+
# TODO: only apply loading/saving mask on the last iteration for EVEN_N_BLOCK, useful for 1st iteration of inference.
|
198 |
+
# Experiment failed inside loop.
|
199 |
+
# Another idea: only on saving? load even out of boundary(will it causes illegal access error)?
|
200 |
+
@triton.jit
|
201 |
+
def _fwd_kernel(
|
202 |
+
Q, K, V, sm_scale,
|
203 |
+
layout_crow_ptr,
|
204 |
+
layout_col_ptr,
|
205 |
+
layout_crow_stride_h, layout_crow_stride_m,
|
206 |
+
layout_col_stride_h, layout_col_stride_m,
|
207 |
+
TMP, L, M, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug. TMP, L, M are assumed to have contiguous layouts
|
208 |
+
Out,
|
209 |
+
stride_qz, stride_qh, stride_qm, stride_qd,
|
210 |
+
stride_kz, stride_kh, stride_kn, stride_kd,
|
211 |
+
stride_vz, stride_vh, stride_vn, stride_vd,
|
212 |
+
stride_oz, stride_oh, stride_om, stride_od,
|
213 |
+
Z, H, N_CTX,
|
214 |
+
PAST_LEN,
|
215 |
+
Q_ROUNDED_LEN,
|
216 |
+
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr,
|
217 |
+
BLOCK_N: tl.constexpr,
|
218 |
+
EVEN_M_BLOCK: tl.constexpr,
|
219 |
+
EVEN_N_BLOCK: tl.constexpr,
|
220 |
+
INFERENCE: tl.constexpr,
|
221 |
+
NUM_DBLOCKS: tl.constexpr,
|
222 |
+
):
|
223 |
+
Q_LEN = N_CTX - PAST_LEN
|
224 |
+
start_m = tl.program_id(0)
|
225 |
+
off_hz = tl.program_id(1)
|
226 |
+
off_h = off_hz % H
|
227 |
+
off_z = off_hz // H
|
228 |
+
Q += off_z * stride_qz + off_h * stride_qh
|
229 |
+
K += off_z * stride_kz + off_h * stride_kh
|
230 |
+
V += off_z * stride_vz + off_h * stride_vh
|
231 |
+
# initialize offsets
|
232 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
233 |
+
offs_n = tl.arange(0, BLOCK_N)
|
234 |
+
offs_d = tl.arange(0, BLOCK_DMODEL)
|
235 |
+
off_q = offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qd
|
236 |
+
# off_k = offs_n[:, None] * stride_kn + offs_d[None, :] * stride_kd
|
237 |
+
off_k = offs_n[None, :] * stride_kn + offs_d[:, None] * stride_kd
|
238 |
+
off_v = offs_n[:, None] * stride_vn + offs_d[None, :] * stride_vd
|
239 |
+
# Initialize pointers to Q, K, V
|
240 |
+
q_ptrs = Q + off_q
|
241 |
+
k_ptrs = K + off_k
|
242 |
+
v_ptrs = V + off_v
|
243 |
+
# initialize pointer to m and l
|
244 |
+
t_ptrs = TMP + off_hz * Q_ROUNDED_LEN + offs_m
|
245 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
|
246 |
+
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
|
247 |
+
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
|
248 |
+
if NUM_DBLOCKS >= 2:
|
249 |
+
acc2 = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
|
250 |
+
|
251 |
+
# load q: it will stay in SRAM throughout
|
252 |
+
if EVEN_M_BLOCK:
|
253 |
+
q = tl.load(q_ptrs)
|
254 |
+
if NUM_DBLOCKS >= 2:
|
255 |
+
q2 = tl.load(q_ptrs + BLOCK_DMODEL * stride_qd)
|
256 |
+
else:
|
257 |
+
q = tl.load(q_ptrs, mask=offs_m[:, None] < Q_LEN)
|
258 |
+
if NUM_DBLOCKS >= 2:
|
259 |
+
q2 = tl.load(q_ptrs + BLOCK_DMODEL * stride_qd, mask=offs_m[:, None] < Q_LEN)
|
260 |
+
|
261 |
+
layout_ptr = layout_crow_ptr + off_h * layout_crow_stride_h + start_m * layout_crow_stride_m
|
262 |
+
start_l = tl.load(layout_ptr).to(tl.int32)
|
263 |
+
end_l = tl.load(layout_ptr + layout_crow_stride_m).to(tl.int32)
|
264 |
+
|
265 |
+
# loop over k, v and update accumulator
|
266 |
+
for col_idx_idx in range(start_l, end_l):
|
267 |
+
col_idx = tl.load(layout_col_ptr + off_h * layout_col_stride_h + col_idx_idx * layout_col_stride_m).to(tl.int32)
|
268 |
+
start_n = col_idx * BLOCK_N
|
269 |
+
# -- compute qk ----
|
270 |
+
if EVEN_N_BLOCK:
|
271 |
+
k = tl.load(k_ptrs + start_n * stride_kn)
|
272 |
+
else:
|
273 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_n[None, :] + start_n < N_CTX)
|
274 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
275 |
+
qk += tl.dot(q, k)
|
276 |
+
|
277 |
+
if NUM_DBLOCKS >= 2:
|
278 |
+
if EVEN_N_BLOCK:
|
279 |
+
k = tl.load(k_ptrs + start_n * stride_kn + BLOCK_DMODEL * stride_kd)
|
280 |
+
else:
|
281 |
+
k = tl.load(k_ptrs + start_n * stride_kn + BLOCK_DMODEL * stride_kd, mask=offs_n[None, :] + start_n < N_CTX)
|
282 |
+
qk += tl.dot(q2, k)
|
283 |
+
|
284 |
+
qk *= sm_scale
|
285 |
+
qk += tl.where(offs_m[:, None] + PAST_LEN >= (start_n + offs_n[None, :]), 0, float('-inf'))
|
286 |
+
# -- compute m_ij, p, l_ij
|
287 |
+
m_ij = tl.max(qk, 1)
|
288 |
+
p = tl.exp(qk - m_ij[:, None])
|
289 |
+
l_ij = tl.sum(p, 1)
|
290 |
+
# -- update m_i and l_i
|
291 |
+
m_i_new = tl.maximum(m_i, m_ij)
|
292 |
+
alpha = tl.exp(m_i - m_i_new)
|
293 |
+
beta = tl.exp(m_ij - m_i_new)
|
294 |
+
l_i_new = alpha * l_i + beta * l_ij
|
295 |
+
# -- update output accumulator --
|
296 |
+
# scale p
|
297 |
+
p_scale = beta / l_i_new
|
298 |
+
p = p * p_scale[:, None]
|
299 |
+
# scale acc
|
300 |
+
acc_scale = l_i / l_i_new * alpha
|
301 |
+
# tl.store(t_ptrs, acc_scale)
|
302 |
+
# acc_scale = tl.load(t_ptrs) # BUG: have to store and immediately load
|
303 |
+
acc = acc * acc_scale[:, None]
|
304 |
+
if NUM_DBLOCKS >= 2:
|
305 |
+
acc2 = acc2 * acc_scale[:, None]
|
306 |
+
p = p.to(Q.dtype.element_ty)
|
307 |
+
# update acc
|
308 |
+
if EVEN_N_BLOCK:
|
309 |
+
v = tl.load(v_ptrs + start_n * stride_vn)
|
310 |
+
else:
|
311 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_n[:, None] + start_n < N_CTX)
|
312 |
+
acc += tl.dot(p, v)
|
313 |
+
|
314 |
+
if NUM_DBLOCKS >= 2:
|
315 |
+
if EVEN_N_BLOCK:
|
316 |
+
v = tl.load(v_ptrs + start_n * stride_vn + BLOCK_DMODEL * stride_vd)
|
317 |
+
else:
|
318 |
+
v = tl.load(v_ptrs + start_n * stride_vn + BLOCK_DMODEL * stride_vd, mask=offs_n[:, None] + start_n < N_CTX)
|
319 |
+
acc2 += tl.dot(p, v)
|
320 |
+
|
321 |
+
# update m_i and l_i
|
322 |
+
l_i = l_i_new
|
323 |
+
m_i = m_i_new
|
324 |
+
|
325 |
+
# rematerialize offsets to save registers
|
326 |
+
# start_m = tl.program_id(0)
|
327 |
+
# offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
328 |
+
# write back l and m
|
329 |
+
if not INFERENCE:
|
330 |
+
l_ptrs = L + off_hz * N_CTX + offs_m
|
331 |
+
m_ptrs = M + off_hz * N_CTX + offs_m
|
332 |
+
if EVEN_M_BLOCK:
|
333 |
+
tl.store(l_ptrs, l_i)
|
334 |
+
tl.store(m_ptrs, m_i)
|
335 |
+
else:
|
336 |
+
tl.store(l_ptrs, l_i, mask=offs_m < Q_LEN)
|
337 |
+
tl.store(m_ptrs, m_i, mask=offs_m < Q_LEN)
|
338 |
+
# initialize pointers to output
|
339 |
+
# offs_n = tl.arange(0, BLOCK_DMODEL)
|
340 |
+
off_o = off_z * stride_oz + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :] * stride_od
|
341 |
+
out_ptrs = Out + off_o
|
342 |
+
tl.store(out_ptrs, acc, mask=offs_m[:, None] < Q_LEN)
|
343 |
+
if NUM_DBLOCKS >= 2:
|
344 |
+
tl.store(out_ptrs + BLOCK_DMODEL * stride_od, acc2, mask=offs_m[:, None] < Q_LEN)
|
345 |
+
|
346 |
+
|
347 |
+
## backward
|
348 |
+
@triton.heuristics(
|
349 |
+
{
|
350 |
+
'EVEN_M_BLOCK': lambda kwargs: kwargs['N_CTX'] % kwargs['BLOCK_M'] == 0,
|
351 |
+
}
|
352 |
+
)
|
353 |
+
@triton.jit
|
354 |
+
def _bwd_preprocess(
|
355 |
+
Out, DO, L, # assume contiguous for Out, DO, L, NewDO, Delta layout.
|
356 |
+
NewDO, Delta,
|
357 |
+
N_CTX,
|
358 |
+
BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr,
|
359 |
+
EVEN_M_BLOCK: tl.constexpr,
|
360 |
+
):
|
361 |
+
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
|
362 |
+
off_d = tl.arange(0, D_HEAD)
|
363 |
+
# load
|
364 |
+
if EVEN_M_BLOCK:
|
365 |
+
o = tl.load(Out + off_m[:, None] * D_HEAD + off_d[None, :]).to(tl.float32)
|
366 |
+
do = tl.load(DO + off_m[:, None] * D_HEAD + off_d[None, :]).to(tl.float32)
|
367 |
+
else:
|
368 |
+
o = tl.load(Out + off_m[:, None] * D_HEAD + off_d[None, :], mask=off_m[:, None] < N_CTX).to(tl.float32)
|
369 |
+
do = tl.load(DO + off_m[:, None] * D_HEAD + off_d[None, :], mask=off_m[:, None] < N_CTX).to(tl.float32)
|
370 |
+
denom = tl.load(L + off_m).to(tl.float32)
|
371 |
+
# compute
|
372 |
+
do = do / denom[:, None]
|
373 |
+
delta = tl.sum(o * do, axis=1)
|
374 |
+
# write-back
|
375 |
+
if EVEN_M_BLOCK:
|
376 |
+
tl.store(NewDO + off_m[:, None] * D_HEAD + off_d[None, :], do)
|
377 |
+
else:
|
378 |
+
tl.store(NewDO + off_m[:, None] * D_HEAD + off_d[None, :], do, mask=off_m[:, None] < N_CTX)
|
379 |
+
tl.store(Delta + off_m, delta)
|
380 |
+
|
381 |
+
|
382 |
+
# Does not suuport unequal seqlen(q) and seqlen(k)
|
383 |
+
@triton.heuristics(
|
384 |
+
{
|
385 |
+
'EVEN_M_BLOCK': lambda kwargs: kwargs['N_CTX'] % kwargs['BLOCK_M'] == 0,
|
386 |
+
'EVEN_N_BLOCK': lambda kwargs: kwargs['N_CTX'] % kwargs['BLOCK_N'] == 0,
|
387 |
+
}
|
388 |
+
)
|
389 |
+
@triton.jit
|
390 |
+
def _bwd_kernel(
|
391 |
+
Q, K, V, sm_scale,
|
392 |
+
layout_ccol_ptr,
|
393 |
+
layout_row_ptr,
|
394 |
+
layout_ccol_stride_h, layout_ccol_stride_m,
|
395 |
+
layout_row_stride_h, layout_row_stride_m,
|
396 |
+
Out, DO, # assume contigous: Out, Do, DQ, DK, DV, L, M, D, seq(q) == seq(k), with stride_oz, stride_oh, stride_om, stride_od,
|
397 |
+
DQ, DK, DV,
|
398 |
+
L, M,
|
399 |
+
D,
|
400 |
+
stride_qz, stride_qh, stride_qm, stride_qd,
|
401 |
+
stride_kz, stride_kh, stride_kn, stride_kd,
|
402 |
+
stride_vz, stride_vh, stride_vn, stride_vd,
|
403 |
+
stride_oz, stride_oh, stride_om, stride_od,
|
404 |
+
# stride_dz, stride_dh, stride_dm, stride_dd,
|
405 |
+
Z, H, N_CTX,
|
406 |
+
num_block,
|
407 |
+
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr,
|
408 |
+
BLOCK_N: tl.constexpr,
|
409 |
+
EVEN_M_BLOCK: tl.constexpr,
|
410 |
+
EVEN_N_BLOCK: tl.constexpr,
|
411 |
+
NUM_DBLOCKS: tl.constexpr,
|
412 |
+
):
|
413 |
+
start_n = tl.program_id(0)
|
414 |
+
off_hz = tl.program_id(1)
|
415 |
+
off_z = off_hz // H
|
416 |
+
off_h = off_hz % H
|
417 |
+
# offset pointers for batch/head
|
418 |
+
Q += off_z * stride_qz + off_h * stride_qh
|
419 |
+
K += off_z * stride_kz + off_h * stride_kh
|
420 |
+
V += off_z * stride_vz + off_h * stride_vh
|
421 |
+
DO += off_z * stride_oz + off_h * stride_oh
|
422 |
+
DQ += off_z * stride_oz + off_h * stride_oh
|
423 |
+
DK += off_z * stride_oz + off_h * stride_oh
|
424 |
+
DV += off_z * stride_oz + off_h * stride_oh
|
425 |
+
# Look like this loop can be parallelled
|
426 |
+
# for start_n in range(0, num_block):
|
427 |
+
|
428 |
+
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
429 |
+
offs_m = tl.arange(0, BLOCK_M)
|
430 |
+
offs_d = tl.arange(0, BLOCK_DMODEL)
|
431 |
+
# initialize pointers to value-like data
|
432 |
+
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :] * stride_kd)
|
433 |
+
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :] * stride_vd)
|
434 |
+
|
435 |
+
# pointer to row-wise quantities in value-like data
|
436 |
+
D_ptrs = D + off_hz * N_CTX
|
437 |
+
m_ptrs = M + off_hz * N_CTX
|
438 |
+
# initialize dv amd dk
|
439 |
+
dv = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32)
|
440 |
+
dk = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32)
|
441 |
+
# k and v stay in SRAM throughout
|
442 |
+
if EVEN_N_BLOCK:
|
443 |
+
k = tl.load(k_ptrs)
|
444 |
+
v = tl.load(v_ptrs)
|
445 |
+
else:
|
446 |
+
k = tl.load(k_ptrs, mask=offs_n[:, None] < N_CTX)
|
447 |
+
v = tl.load(v_ptrs, mask=offs_n[:, None] < N_CTX)
|
448 |
+
|
449 |
+
if NUM_DBLOCKS >= 2:
|
450 |
+
dv2 = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32)
|
451 |
+
dk2 = tl.zeros([BLOCK_N, BLOCK_DMODEL], dtype=tl.float32)
|
452 |
+
if EVEN_N_BLOCK:
|
453 |
+
k2 = tl.load(k_ptrs + BLOCK_DMODEL * stride_kd)
|
454 |
+
v2 = tl.load(v_ptrs + BLOCK_DMODEL * stride_vd)
|
455 |
+
else:
|
456 |
+
k2 = tl.load(k_ptrs + BLOCK_DMODEL * stride_kd, mask=offs_n[:, None] < N_CTX)
|
457 |
+
v2 = tl.load(v_ptrs + BLOCK_DMODEL * stride_vd, mask=offs_n[:, None] < N_CTX)
|
458 |
+
|
459 |
+
# loop over rows
|
460 |
+
|
461 |
+
layout_ptr = layout_ccol_ptr + off_h * layout_ccol_stride_h + start_n * layout_ccol_stride_m
|
462 |
+
start_l = tl.load(layout_ptr).to(tl.int32)
|
463 |
+
end_l = tl.load(layout_ptr + layout_ccol_stride_m).to(tl.int32)
|
464 |
+
|
465 |
+
for row_idx_idx in range(start_l, end_l):
|
466 |
+
row_idx = tl.load(layout_row_ptr + off_h * layout_row_stride_h + row_idx_idx * layout_row_stride_m).to(tl.int32)
|
467 |
+
start_m = row_idx * BLOCK_M
|
468 |
+
|
469 |
+
# offs_qm = start_m + tl.arange(0, BLOCK_M)
|
470 |
+
offs_m_curr = start_m + offs_m
|
471 |
+
q_ptrs = Q + (offs_m_curr[:, None] * stride_qm + offs_d[None, :] * stride_qd)
|
472 |
+
do_ptrs = DO + (offs_m_curr[:, None] * stride_om + offs_d[None, :] * stride_od)
|
473 |
+
dq_ptrs = DQ + (offs_m_curr[:, None] * stride_om + offs_d[None, :] * stride_od)
|
474 |
+
|
475 |
+
# load q, k, v, do on-chip
|
476 |
+
if EVEN_M_BLOCK:
|
477 |
+
q = tl.load(q_ptrs)
|
478 |
+
else:
|
479 |
+
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < N_CTX)
|
480 |
+
# re-compute p = softmax(qk, dim=-1).T
|
481 |
+
# NOTE: `do` is pre-divided by `l`; no normalization here
|
482 |
+
qk = tl.dot(q, tl.trans(k))
|
483 |
+
|
484 |
+
if NUM_DBLOCKS >= 2:
|
485 |
+
if EVEN_M_BLOCK:
|
486 |
+
q2 = tl.load(q_ptrs + BLOCK_DMODEL * stride_qd)
|
487 |
+
else:
|
488 |
+
q2 = tl.load(q_ptrs + BLOCK_DMODEL * stride_qd, mask=offs_m_curr[:, None] < N_CTX)
|
489 |
+
qk += tl.dot(q2, tl.trans(k2))
|
490 |
+
|
491 |
+
qk += tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), 0, float('-inf'))
|
492 |
+
|
493 |
+
if EVEN_M_BLOCK:
|
494 |
+
m = tl.load(m_ptrs + offs_m_curr)
|
495 |
+
else:
|
496 |
+
m = tl.load(m_ptrs + offs_m_curr, mask=offs_m_curr < N_CTX)
|
497 |
+
p = tl.exp(qk * sm_scale - m[:, None])
|
498 |
+
|
499 |
+
# compute dv
|
500 |
+
if EVEN_M_BLOCK:
|
501 |
+
do = tl.load(do_ptrs)
|
502 |
+
else:
|
503 |
+
do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < N_CTX)
|
504 |
+
|
505 |
+
if NUM_DBLOCKS >= 2:
|
506 |
+
if EVEN_M_BLOCK:
|
507 |
+
do2 = tl.load(do_ptrs + BLOCK_DMODEL * stride_od)
|
508 |
+
else:
|
509 |
+
do2 = tl.load(do_ptrs + BLOCK_DMODEL * stride_od, mask=offs_m_curr[:, None] < N_CTX)
|
510 |
+
|
511 |
+
dv += tl.dot(tl.trans(p.to(Q.dtype.element_ty)), do)
|
512 |
+
|
513 |
+
if NUM_DBLOCKS >= 2:
|
514 |
+
dv2 += tl.dot(tl.trans(p.to(Q.dtype.element_ty)), do2)
|
515 |
+
|
516 |
+
# compute dp = dot(v, do)
|
517 |
+
if EVEN_M_BLOCK:
|
518 |
+
Di = tl.load(D_ptrs + offs_m_curr)
|
519 |
+
else:
|
520 |
+
Di = tl.load(D_ptrs + offs_m_curr, mask=offs_m_curr < N_CTX)
|
521 |
+
dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None]
|
522 |
+
dp += tl.dot(do, tl.trans(v))
|
523 |
+
|
524 |
+
if NUM_DBLOCKS >= 2:
|
525 |
+
dp += tl.dot(do2, tl.trans(v2))
|
526 |
+
|
527 |
+
# compute ds = p * (dp - delta[:, None])
|
528 |
+
ds = p * dp * sm_scale
|
529 |
+
# compute dk = dot(ds.T, q)
|
530 |
+
dk += tl.dot(tl.trans(ds.to(Q.dtype.element_ty)), q)
|
531 |
+
if NUM_DBLOCKS >= 2:
|
532 |
+
dk2 += tl.dot(tl.trans(ds.to(Q.dtype.element_ty)), q2)
|
533 |
+
|
534 |
+
# # compute dq
|
535 |
+
dq = tl.dot(ds.to(Q.dtype.element_ty), k)
|
536 |
+
if EVEN_M_BLOCK:
|
537 |
+
tl.atomic_add(dq_ptrs, dq)
|
538 |
+
else:
|
539 |
+
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < N_CTX)
|
540 |
+
|
541 |
+
if NUM_DBLOCKS >= 2:
|
542 |
+
dq2 = tl.dot(ds.to(Q.dtype.element_ty), k2)
|
543 |
+
dq_ptrs2 = dq_ptrs + BLOCK_DMODEL * stride_od
|
544 |
+
if EVEN_M_BLOCK:
|
545 |
+
tl.atomic_add(dq_ptrs2, dq2)
|
546 |
+
else:
|
547 |
+
tl.atomic_add(dq_ptrs2, dq2, mask=offs_m_curr[:, None] < N_CTX)
|
548 |
+
|
549 |
+
# write-back
|
550 |
+
dv_ptrs = DV + (offs_n[:, None] * stride_om + offs_d[None, :] * stride_od)
|
551 |
+
dk_ptrs = DK + (offs_n[:, None] * stride_om + offs_d[None, :] * stride_od)
|
552 |
+
if EVEN_N_BLOCK:
|
553 |
+
tl.store(dv_ptrs, dv)
|
554 |
+
tl.store(dk_ptrs, dk)
|
555 |
+
else:
|
556 |
+
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < N_CTX)
|
557 |
+
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < N_CTX)
|
558 |
+
|
559 |
+
if NUM_DBLOCKS >= 2:
|
560 |
+
dv_ptrs2 = dv_ptrs + BLOCK_DMODEL * stride_od
|
561 |
+
dk_ptrs2 = dk_ptrs + BLOCK_DMODEL * stride_od
|
562 |
+
if EVEN_N_BLOCK:
|
563 |
+
tl.store(dv_ptrs2, dv2)
|
564 |
+
tl.store(dk_ptrs2, dk2)
|
565 |
+
else:
|
566 |
+
tl.store(dv_ptrs2, dv2, mask=offs_n[:, None] < N_CTX)
|
567 |
+
tl.store(dk_ptrs2, dk2, mask=offs_n[:, None] < N_CTX)
|
568 |
+
|
569 |
+
|
570 |
+
|
571 |
+
def _forward(ctx, q, k, v, layout_crow_indices, layout_col_indices, sm_scale, BLOCK_M, BLOCK_N, num_warps=None, num_stages=1, inference=None, out=None):
|
572 |
+
'''
|
573 |
+
:param q, k, v: [batch, n_heads, seq_len, model_dim]. len of q is allowed to be different than k/v.
|
574 |
+
:param layout_crow_indices, layout_col_indices: same as CSR.crow_indices, and CSR.col_indices used to preresent a sparse tensor.
|
575 |
+
Each element represent a block, i.e, all elements in a block to be attentdd, or not attended at all..
|
576 |
+
'''
|
577 |
+
assert q.shape[-1] == k.shape[-1] == v.shape[-1]
|
578 |
+
assert k.shape[2] == v.shape[2]
|
579 |
+
o = out if out is not None else torch.empty_like(q).contiguous()
|
580 |
+
grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1])
|
581 |
+
|
582 |
+
q_rounded_len = grid[0] * BLOCK_M
|
583 |
+
tmp = torch.empty((q.shape[0] * q.shape[1], q_rounded_len), device=q.device, dtype=torch.float32)
|
584 |
+
|
585 |
+
if inference is None:
|
586 |
+
inference = (not q.requires_grad) and (not k.requires_grad) and (not v.requires_grad)
|
587 |
+
|
588 |
+
if inference:
|
589 |
+
L, m = tmp, tmp # no need to use create new tensor
|
590 |
+
else:
|
591 |
+
L = torch.empty((q.shape[0] * q.shape[1], q_rounded_len), device=q.device, dtype=torch.float32)
|
592 |
+
m = torch.empty((q.shape[0] * q.shape[1], q_rounded_len), device=q.device, dtype=torch.float32)
|
593 |
+
|
594 |
+
if layout_col_indices.dim() == 1:
|
595 |
+
layout_crow_indices = layout_crow_indices[None].expand(q.shape[1] , -1)
|
596 |
+
layout_col_indices = layout_col_indices[None].expand(q.shape[1] , -1)
|
597 |
+
|
598 |
+
assert q.shape[-1] in [64, 128]
|
599 |
+
BLOCK_DMODEL = 64
|
600 |
+
|
601 |
+
if num_warps is None:
|
602 |
+
MIN_D = min(BLOCK_M, BLOCK_N, BLOCK_DMODEL)
|
603 |
+
num_warps = max(1, 2 ** int(math.log2(MIN_D / 16)))
|
604 |
+
# print(f'> {BLOCK_M=}, {BLOCK_N=}, {BLOCK_DMODEL=}, {num_warps=}, {num_stages=}')
|
605 |
+
else:
|
606 |
+
assert math.log2(num_warps) % 1 == 0, f'''"num_warps" should be power of 2, but got {num_warps}.'''
|
607 |
+
|
608 |
+
## For debugging:
|
609 |
+
# print(f'>> {q.shape=}, {k.shape=}, {BLOCK_M=}, {BLOCK_N=}, {num_warps=}, {BLOCK_DMODEL=}, {q.stride()=}, {k.stride()=}')
|
610 |
+
# print(f'>> {layout_crow_indices=}\n{layout_col_indices=}\n {layout_crow_indices.stride()=}, {layout_crow_indices.stride()=}')
|
611 |
+
# print(f'> {q.shape=}, {k.shape=}, {layout_crow_indices.shape}, {layout_col_indices.shape}, {layout_crow_indices.stride()}, \
|
612 |
+
# {layout_col_indices.stride()}, {layout_crow_indices=}, {layout_col_indices=}')
|
613 |
+
|
614 |
+
_fwd_kernel[grid](
|
615 |
+
q, k, v, sm_scale,
|
616 |
+
layout_crow_indices,
|
617 |
+
layout_col_indices,
|
618 |
+
layout_crow_indices.stride(0), layout_crow_indices.stride(1),
|
619 |
+
layout_col_indices.stride(0), layout_col_indices.stride(1),
|
620 |
+
tmp, L, m,
|
621 |
+
o,
|
622 |
+
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
|
623 |
+
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
|
624 |
+
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
|
625 |
+
o.stride(0), o.stride(1), o.stride(2), o.stride(3),
|
626 |
+
q.shape[0], q.shape[1], k.shape[2],
|
627 |
+
k.shape[2] - q.shape[2],
|
628 |
+
q_rounded_len,
|
629 |
+
BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
|
630 |
+
BLOCK_DMODEL=BLOCK_DMODEL,
|
631 |
+
EVEN_M_BLOCK=q.shape[2] % BLOCK_M == 0,
|
632 |
+
EVEN_N_BLOCK=k.shape[2] % BLOCK_N == 0 ,
|
633 |
+
INFERENCE=inference,
|
634 |
+
NUM_DBLOCKS=q.shape[-1] // BLOCK_DMODEL,
|
635 |
+
num_warps=num_warps,
|
636 |
+
num_stages=num_stages,
|
637 |
+
)
|
638 |
+
if inference:
|
639 |
+
L, m = None, None
|
640 |
+
|
641 |
+
ctx.save_for_backward(q, k, v, o, L, m, layout_crow_indices, layout_col_indices)
|
642 |
+
ctx.BLOCK_M = BLOCK_M
|
643 |
+
ctx.BLOCK_N = BLOCK_N
|
644 |
+
ctx.BLOCK_DMODEL = BLOCK_DMODEL
|
645 |
+
# ctx.BLOCK = BLOCK
|
646 |
+
ctx.grid = grid
|
647 |
+
ctx.sm_scale = sm_scale
|
648 |
+
ctx.num_warps = num_warps
|
649 |
+
ctx.num_stages = num_stages
|
650 |
+
return o
|
651 |
+
|
652 |
+
|
653 |
+
def _backward(ctx, do, layout_ccol_indices, layout_row_indices, dq=None, dk=None, dv=None):
|
654 |
+
# q, k, v, o, l, m = ctx.saved_tensors
|
655 |
+
q, k, v, o, l, m, layout_crow_indices, layout_col_indices = ctx.saved_tensors
|
656 |
+
|
657 |
+
## this following too slow to do online, so get it from inputs, which is cached.
|
658 |
+
# layout_ccol_indices, layout_row_indices = dense_to_ccol_row(crow_col_to_dense(ctx.layout_crow_indices, ctx.layout_col_indices))
|
659 |
+
# layout_ccol_indices, layout_row_indices = dense_to_ccol_row(crow_col_to_dense(layout_crow_indices, layout_col_indices))
|
660 |
+
|
661 |
+
if not do.is_contiguous():
|
662 |
+
do = do.contiguous()
|
663 |
+
## for debugging
|
664 |
+
# print(f'----> do is not contiguous: {do.stride()=}')
|
665 |
+
# raise ValueError(f'>>>> output grad is not contiguous: {do.stride()=}')
|
666 |
+
|
667 |
+
if not o.is_contiguous():
|
668 |
+
# TODO: currently only work with contiguous q/k/v.
|
669 |
+
raise ValueError(f'--> output is not contiguous: {o.stride()=}. This is maybe caused by q/k/v not being contiguous.')
|
670 |
+
|
671 |
+
|
672 |
+
if layout_ccol_indices.dim() == 1:
|
673 |
+
layout_ccol_indices = layout_ccol_indices[None].expand(q.shape[1], -1)
|
674 |
+
layout_row_indices = layout_row_indices[None].expand(q.shape[1], -1)
|
675 |
+
|
676 |
+
# do = do.contiguous()
|
677 |
+
dq = dq if dq is not None else torch.zeros_like(q, dtype=torch.float32)
|
678 |
+
dk = dk if dk is not None else torch.empty_like(k)
|
679 |
+
dv =dv if dv is not None else torch.empty_like(v)
|
680 |
+
do_scaled = torch.empty_like(do)
|
681 |
+
delta = torch.empty_like(l)
|
682 |
+
|
683 |
+
assert o.stride() == dq.stride() == dk.stride() == dv.stride() == do_scaled.stride()
|
684 |
+
|
685 |
+
_bwd_preprocess[(ctx.grid[0] * ctx.grid[1], )](
|
686 |
+
o, do, l,
|
687 |
+
do_scaled, delta,
|
688 |
+
k.shape[2],
|
689 |
+
BLOCK_M=ctx.BLOCK_M, D_HEAD=q.shape[-1],
|
690 |
+
)
|
691 |
+
|
692 |
+
grid = (triton.cdiv(q.shape[2], ctx.BLOCK_N), ctx.grid[1])
|
693 |
+
|
694 |
+
_bwd_kernel[grid](
|
695 |
+
q, k, v, ctx.sm_scale,
|
696 |
+
layout_ccol_indices,
|
697 |
+
layout_row_indices,
|
698 |
+
layout_ccol_indices.stride(0), layout_ccol_indices.stride(1),
|
699 |
+
layout_row_indices.stride(0), layout_row_indices.stride(1),
|
700 |
+
o, do_scaled,
|
701 |
+
dq, dk, dv,
|
702 |
+
l, m,
|
703 |
+
delta,
|
704 |
+
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
|
705 |
+
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
|
706 |
+
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
|
707 |
+
o.stride(0), o.stride(1), o.stride(2), o.stride(3),
|
708 |
+
q.shape[0], q.shape[1], q.shape[2],
|
709 |
+
ctx.grid[0],
|
710 |
+
BLOCK_M=ctx.BLOCK_M,
|
711 |
+
BLOCK_N=ctx.BLOCK_N,
|
712 |
+
BLOCK_DMODEL=ctx.BLOCK_DMODEL,
|
713 |
+
NUM_DBLOCKS=q.shape[-1] // ctx.BLOCK_DMODEL,
|
714 |
+
num_warps=ctx.num_warps,
|
715 |
+
num_stages=1,
|
716 |
+
)
|
717 |
+
return dq, dk, dv, None, None, None
|
718 |
+
|
719 |
+
|
720 |
+
class _sparse_attention(torch.autograd.Function):
|
721 |
+
|
722 |
+
@staticmethod
|
723 |
+
def forward(ctx, q, k, v, layout_crow_indices, layout_col_indices, sm_scale):
|
724 |
+
BLOCK = 128
|
725 |
+
# shape constraints
|
726 |
+
return _forward(ctx, q, k, v, layout_crow_indices, layout_col_indices, sm_scale, BLOCK, BLOCK)
|
727 |
+
|
728 |
+
@staticmethod
|
729 |
+
def backward(ctx, do):
|
730 |
+
# q, k, v, o, l, m = ctx.saved_tensors
|
731 |
+
q, k, v, o, l, m, layout_crow_indices, layout_col_indices = ctx.saved_tensors
|
732 |
+
# TODO: the following is very inefficient.
|
733 |
+
# layout_ccol_indices, layout_row_indices = dense_to_ccol_row(crow_col_to_dense(ctx.layout_crow_indices, ctx.layout_col_indices))
|
734 |
+
layout_ccol_indices, layout_row_indices = dense_to_ccol_row(crow_col_to_dense(layout_crow_indices, layout_col_indices))
|
735 |
+
return _backward(ctx, do, layout_ccol_indices, layout_row_indices)
|
736 |
+
|
737 |
+
|
738 |
+
|
739 |
+
# suppressed
|
740 |
+
class _sparse_attention_inference(_sparse_attention):
|
741 |
+
# TODO: does not work now, as BLOCK_M cannot be <1, as shape for tl.dot cannot be smaller than 16.
|
742 |
+
@staticmethod
|
743 |
+
def forward(ctx, q, k, v, layout_crow_indices, layout_col_indices, sm_scale):
|
744 |
+
BLOCK = 128
|
745 |
+
return _forward(ctx, q, k, v, layout_crow_indices, layout_col_indices, sm_scale, 1, BLOCK)
|
746 |
+
|
747 |
+
|
748 |
+
|
749 |
+
def sparse_attention_factory(BLOCK_M=128, BLOCK_N=128, **kwargs):
|
750 |
+
class _sparse_attention_config(_sparse_attention):
|
751 |
+
@staticmethod
|
752 |
+
def forward(ctx, q, k, v, layout_crow_indices, layout_col_indices, sm_scale):
|
753 |
+
# shape constraints
|
754 |
+
return _forward(ctx, q, k, v, layout_crow_indices, layout_col_indices, sm_scale, BLOCK_M, BLOCK_N,
|
755 |
+
**kwargs
|
756 |
+
)
|
757 |
+
return _sparse_attention_config.apply
|
758 |
+
|
759 |
+
|
760 |
+
@lru_cache(maxsize=8)
|
761 |
+
def get_local_strided_sparse_attention_op(
|
762 |
+
n_heads: int,
|
763 |
+
max_seq_len:int,
|
764 |
+
sparse_block_size: int=128,
|
765 |
+
local_blocks: int=4,
|
766 |
+
vert_stride: int=4,
|
767 |
+
homo_head: bool=False,
|
768 |
+
dtype=torch.bfloat16,
|
769 |
+
device='cuda',
|
770 |
+
active_head_range=None,
|
771 |
+
verbose=True,
|
772 |
+
**kwargs):
|
773 |
+
'''
|
774 |
+
:param n_heads: total number of attention heads (regardless of tensor/model parallel)
|
775 |
+
:param max_seq_len: max sequence length. Need to be bigger or equal to the length of sequences.
|
776 |
+
:param sparse_block_size: sparse block size. Default to 128
|
777 |
+
:param local_blocks: number of nearest block to attend to. Default to 4, i.e., attention to previous 4xblock_size tokens.
|
778 |
+
:param vert_stride: Default to 4. Meaning
|
779 |
+
:param homo_head: if all head shared the same pattern.
|
780 |
+
:param active_head_range: tuple of start & end of the heads, e..g, (8, 16). Default to use all heads.
|
781 |
+
Mainly for tensor/model parallelization where heads are splitted to different GPUs.
|
782 |
+
'''
|
783 |
+
|
784 |
+
if verbose:
|
785 |
+
print((f'> new block_sparse_attn op constructed with config: '
|
786 |
+
f'{n_heads=}, {max_seq_len=}, {sparse_block_size=}, {local_blocks=}, '
|
787 |
+
f'{vert_stride=}, {homo_head=}, {active_head_range=}, {kwargs=}'))
|
788 |
+
# assert math.log2(max_seq_len) % 2 == 0, f"max_seq_len should be power of 2 to be more efficient"
|
789 |
+
_, block_sparse_pattern, _ = _get_sparse_attn_mask(n_heads, max_seq_len, max_seq_len, dtype, device,
|
790 |
+
BLOCK=sparse_block_size, local_blocks=local_blocks,
|
791 |
+
vert_stride=vert_stride, homo_head=homo_head,
|
792 |
+
return_dense=False)
|
793 |
+
if (not homo_head) and (active_head_range is not None):
|
794 |
+
assert isinstance(active_head_range, tuple)
|
795 |
+
assert len(active_head_range) == 2, '"active_head_range" should be a tuple of start/end index of the heads.'
|
796 |
+
h_start, h_end = active_head_range
|
797 |
+
block_sparse_pattern = block_sparse_pattern[h_start:h_end]
|
798 |
+
# print(block_sparse_pattern)
|
799 |
+
return get_sparse_attn_op(block_sparse_pattern, sparse_block_size, **kwargs)
|
800 |
+
|
801 |
+
|
802 |
+
def get_sparse_attn_op(
|
803 |
+
sparse_pattern: torch.tensor,
|
804 |
+
sparse_block_size: int=128,
|
805 |
+
kernel_block_size=128,
|
806 |
+
qkv_format='q,k,v',
|
807 |
+
**kwargs):
|
808 |
+
'''
|
809 |
+
Ccreate a block-sparse op with fixed layout. This is to avoid the need to of create CSR layout and convert it to CSC layout everytime,
|
810 |
+
which is very inefficient (use python loops on CPU. PyTorch 1.13 supports CSR->CSC, may help.)
|
811 |
+
|
812 |
+
:param sparse_pattern: sparse pattern of the blocks. Should be `num_blocks(q) x num_blocks(k)` or `n_heads x num_blocks x num_blocks`.
|
813 |
+
This tensor should have lower-triangular matrices on the last 2 dimensions for causal attention
|
814 |
+
:param sparse_block_size: sparse block size. Default to 128
|
815 |
+
:param kernel_block_size: the tile/block size to launch a triton instance. Default to None, i.e., same as `sparse_block_size`
|
816 |
+
:param qkv_format: Choices=['q,k,v', 'q, kv', 'qkv'], i.e., separated q,k,v, or kv packed, or qkv packed. Currently, only 'q,k,v' is supported.
|
817 |
+
|
818 |
+
:param kwargs: keyward arguments passed to `_forward`
|
819 |
+
'''
|
820 |
+
# assert qkv_format in ('q,k,v', 'q, kv', 'qkv') # to save from running `concat` at forward/backward
|
821 |
+
|
822 |
+
assert qkv_format == 'q,k,v'
|
823 |
+
|
824 |
+
if kernel_block_size is None:
|
825 |
+
kernel_block_size = sparse_block_size
|
826 |
+
else:
|
827 |
+
assert sparse_block_size % kernel_block_size == 0, f"The sparse block size must be a multiple of {kernel_block_size}."
|
828 |
+
assert kernel_block_size >=16 and math.log2(kernel_block_size) % 1 == 0, f"block_size must be power of 2 and at least 16, but {kernel_block_size} is given"
|
829 |
+
|
830 |
+
|
831 |
+
# print(f'>> {sparse_pattern.shape=}')
|
832 |
+
# print(f'{sparse_pattern=}')
|
833 |
+
if sparse_block_size // kernel_block_size > 1:
|
834 |
+
_mul = sparse_block_size // kernel_block_size
|
835 |
+
# need to consider if block_m and block_n are different
|
836 |
+
sparse_pattern = torch.kron(sparse_pattern, sparse_pattern.new_ones(_mul, _mul))
|
837 |
+
num_sparse_blocks = sparse_pattern.size(-1)
|
838 |
+
block_causal_mask = torch.arange(0, num_sparse_blocks)[:, None] >= torch.arange(0, num_sparse_blocks)[None]
|
839 |
+
sparse_pattern *= block_causal_mask.type_as(sparse_pattern)
|
840 |
+
# print(f'>> after: {sparse_pattern.shape=}')
|
841 |
+
# print(f'{sparse_pattern=}')
|
842 |
+
|
843 |
+
BLOCK_N = kernel_block_size
|
844 |
+
NUM_BLOCK = sparse_pattern.size(-1)
|
845 |
+
MAX_SEQ_LEN = kernel_block_size * NUM_BLOCK
|
846 |
+
|
847 |
+
grand_layout_crow_indices, grand_layout_col_indices = dense_to_crow_col(sparse_pattern)
|
848 |
+
# sparse csc layout for backward
|
849 |
+
grand_layout_ccol_indices, grand_layout_row_indices = dense_to_ccol_row(sparse_pattern)
|
850 |
+
|
851 |
+
|
852 |
+
# cache GPU backward layout. limit the size to avoid OOM as time goes.
|
853 |
+
# For inference, one only needs to cache one block as sequence length always increases
|
854 |
+
# Therefore, this cache needs to be reconstructed per every `block_size`-steps.
|
855 |
+
# For training/finetune, set to 8 to increase cache hit.
|
856 |
+
# Given an input, the block_len will be the same for all layers, so cache is very helpful.
|
857 |
+
|
858 |
+
max_cache_size = 1 if kwargs.get('inference', False) else 8
|
859 |
+
|
860 |
+
@lru_cache(maxsize=max_cache_size)
|
861 |
+
def get_backward_layout_by_block_len(block_len):
|
862 |
+
assert block_len <= NUM_BLOCK
|
863 |
+
if block_len == NUM_BLOCK:
|
864 |
+
return (grand_layout_ccol_indices, grand_layout_row_indices)
|
865 |
+
return dense_to_ccol_row(sparse_pattern[..., :block_len, :block_len])
|
866 |
+
|
867 |
+
# for debugging
|
868 |
+
# if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
|
869 |
+
# print(f'> {sparse_pattern.cpu().tolist()=}')
|
870 |
+
# print('----')
|
871 |
+
# print(f'> {grand_layout_crow_indices.cpu().tolist()=}\n{grand_layout_col_indices.cpu().tolist()=}')
|
872 |
+
|
873 |
+
|
874 |
+
# q, k, v separated
|
875 |
+
class _q_k_v_sparse_attention(torch.autograd.Function):
|
876 |
+
@staticmethod
|
877 |
+
def forward(ctx, q, k, v, sm_scale):
|
878 |
+
# assert q.shape[2] == 1 or q.shape[2] == k.shape[2]
|
879 |
+
# shape constraints
|
880 |
+
MIN_BLOCK_SIZE = 16
|
881 |
+
assert BLOCK_N >= MIN_BLOCK_SIZE
|
882 |
+
BLOCK_M = 16 if q.shape[2] <= 16 else BLOCK_N # BLOCK_M has to be power of 2
|
883 |
+
|
884 |
+
# this following code only works for causal attention
|
885 |
+
K_BLOCKS = triton.cdiv(k.shape[2], kernel_block_size)
|
886 |
+
# Q_START_BLOCKS = K_BLOCKS - 1 if q.shape[2] == 1 else 0
|
887 |
+
Q_START_BLOCKS = K_BLOCKS - triton.cdiv(q.shape[2], BLOCK_N)
|
888 |
+
# print(Q_START_BLOCKS, K_BLOCKS)
|
889 |
+
|
890 |
+
layout_crow_indices = grand_layout_crow_indices[..., Q_START_BLOCKS:K_BLOCKS+1]
|
891 |
+
layout_col_indices = grand_layout_col_indices
|
892 |
+
# print(BLOCK_M, BLOCK_N, Q_START_BLOCKS, K_BLOCKS+1, layout_crow_indices, layout_col_indices)
|
893 |
+
|
894 |
+
return _forward(ctx, q, k, v, layout_crow_indices, layout_col_indices, sm_scale, BLOCK_M, BLOCK_N,
|
895 |
+
**kwargs
|
896 |
+
)
|
897 |
+
@staticmethod
|
898 |
+
def backward(ctx, do):
|
899 |
+
q, k = ctx.saved_tensors[:2]
|
900 |
+
assert q.shape[2] == k.shape[2], '> currently backward can only be done if q, k have same length. Contact @EricLin if you need it.'
|
901 |
+
# assume q, k have same length
|
902 |
+
block_len = triton.cdiv(do.shape[2], kernel_block_size)
|
903 |
+
backward_layout = get_backward_layout_by_block_len(block_len)
|
904 |
+
return _backward(ctx, do, *backward_layout)[:4]
|
905 |
+
|
906 |
+
|
907 |
+
def _q_k_v_sparse_attention_fn(*args):
|
908 |
+
return _q_k_v_sparse_attention.apply(*args)
|
909 |
+
|
910 |
+
_q_k_v_sparse_attention_fn.sparse_pattern = sparse_pattern
|
911 |
+
_q_k_v_sparse_attention_fn.grand_layout_crow_indices = grand_layout_crow_indices
|
912 |
+
_q_k_v_sparse_attention_fn.grand_layout_col_indices = grand_layout_col_indices
|
913 |
+
_q_k_v_sparse_attention_fn.grand_layout_ccol_indices = grand_layout_ccol_indices
|
914 |
+
_q_k_v_sparse_attention_fn.grand_layout_row_indices = grand_layout_row_indices
|
915 |
+
|
916 |
+
return _q_k_v_sparse_attention_fn
|
917 |
+
|
918 |
+
###########################################################
|
919 |
+
###########################################################
|
920 |
+
|
921 |
+
###########################################################
|
922 |
+
################ Inference Kernels ########################
|
923 |
+
###########################################################
|
924 |
+
|
925 |
+
def blocksparse_flash_attn_padded_fwd(
|
926 |
+
q, k, v, # (batch, tokens, n_heads, head_size)
|
927 |
+
sm_scale,
|
928 |
+
sparse_layout,
|
929 |
+
*,
|
930 |
+
left_paddings = None,
|
931 |
+
seqlens = None,
|
932 |
+
block_size = 64,
|
933 |
+
max_seqlen = None
|
934 |
+
):
|
935 |
+
'''
|
936 |
+
q, k, v: (batch, tokens, n_heads/n_kv_heads, head_size)
|
937 |
+
left_paddings: (batch, ), number of left paddings for each sample.
|
938 |
+
seqlens: can be used to specify right padding. No need to specify if left_paddings is used.
|
939 |
+
'''
|
940 |
+
batches, q_len, n_heads, head_size = q.shape
|
941 |
+
_, k_len, n_kv_heads, _ = k.shape
|
942 |
+
|
943 |
+
|
944 |
+
assert q.dim() == k.dim() == v.dim() == 4
|
945 |
+
assert q.size(2) % k.size(2) == 0
|
946 |
+
assert q.size(0) == k.size(0) and q.size(3) == k.size(3)
|
947 |
+
assert k.shape == v.shape # TODO: allow diff head_size for k, v
|
948 |
+
assert q_len == 1 or q_len == k_len, \
|
949 |
+
f'q length can only 1 for decoding for same as k length for prefilling.'
|
950 |
+
|
951 |
+
q_k_ratio = q.size(2) // k.size(2)
|
952 |
+
|
953 |
+
if max_seqlen:
|
954 |
+
assert k.size(1) <= max_seqlen, f'k has seqlen {k.size(1)} while max sequence length is set to {max_seqlen}.'
|
955 |
+
|
956 |
+
# paddings always has zero output, a little slower than using empty
|
957 |
+
out = q.new_zeros(q.shape)
|
958 |
+
|
959 |
+
layout_crow_indices, layout_col_indices = sparse_layout
|
960 |
+
block_d = triton.next_power_of_2(head_size)
|
961 |
+
|
962 |
+
if left_paddings is not None:
|
963 |
+
assert left_paddings.shape == (batches,)
|
964 |
+
k_batch_starts = left_paddings.to(q.device, dtype=torch.int32).contiguous()
|
965 |
+
else:
|
966 |
+
k_batch_starts = torch.zeros((batches,), dtype=torch.int32, device=q.device)
|
967 |
+
|
968 |
+
if seqlens is not None:
|
969 |
+
k_batch_ends = k_batch_starts + seqlens.type_as(k_batch_starts)
|
970 |
+
assert k_batch_ends.max() <= k_len, f'seqlens (+left_paddings if any) exceeds seqlen.'
|
971 |
+
else:
|
972 |
+
k_batch_ends = torch.zeros_like(k_batch_starts) + k_len
|
973 |
+
|
974 |
+
if q_len == 1:
|
975 |
+
q_batch_starts = torch.zeros_like(k_batch_starts)
|
976 |
+
q_batch_ends = q_batch_starts + 1
|
977 |
+
else:
|
978 |
+
q_batch_starts = k_batch_starts
|
979 |
+
q_batch_ends = k_batch_ends
|
980 |
+
|
981 |
+
# switch to use cpu to avoid too many kernel lauch when iterate over
|
982 |
+
q_lens = (q_batch_ends - q_batch_starts).cpu()
|
983 |
+
n_blocks = (q_lens + block_size - 1) // block_size
|
984 |
+
|
985 |
+
q_batch_ids = torch.tensor([i for i, n in enumerate(n_blocks) for _ in range(n)],
|
986 |
+
dtype=q_batch_starts.dtype,
|
987 |
+
device=q_batch_starts.device)
|
988 |
+
q_start_sids = torch.tensor([i * block_size for n in n_blocks for i in range(n)],
|
989 |
+
dtype=q_batch_starts.dtype,
|
990 |
+
device=q_batch_starts.device)
|
991 |
+
|
992 |
+
grid = (len(q_start_sids), n_heads)
|
993 |
+
|
994 |
+
_fwd_kernel_batch_inference[grid](
|
995 |
+
q, k, v, out,
|
996 |
+
sm_scale,
|
997 |
+
q_batch_starts,
|
998 |
+
q_batch_ends,
|
999 |
+
k_batch_starts,
|
1000 |
+
k_batch_ends,
|
1001 |
+
q_batch_ids,
|
1002 |
+
q_start_sids,
|
1003 |
+
|
1004 |
+
*q.stride(),
|
1005 |
+
*k.stride(),
|
1006 |
+
*v.stride(),
|
1007 |
+
*out.stride(),
|
1008 |
+
|
1009 |
+
layout_crow_indices,
|
1010 |
+
layout_col_indices,
|
1011 |
+
*layout_crow_indices.stride(),
|
1012 |
+
*layout_col_indices.stride(),
|
1013 |
+
|
1014 |
+
q_k_ratio,
|
1015 |
+
HAS_BATCH_DIM = True,
|
1016 |
+
D_HEAD = head_size,
|
1017 |
+
BLOCK_M = block_size,
|
1018 |
+
BLOCK_N = block_size,
|
1019 |
+
BLOCK_D = block_d,
|
1020 |
+
BLOCK_M_LOADING = 16 if q_len == 1 else block_size, # smaller for decoding
|
1021 |
+
EVEN_D = block_d == head_size,
|
1022 |
+
num_warps = 1 if q_len == 1 else 4,
|
1023 |
+
num_stages = 3
|
1024 |
+
)
|
1025 |
+
|
1026 |
+
return out
|
1027 |
+
|
1028 |
+
|
1029 |
+
def blocksparse_flash_attn_varlen_fwd(
|
1030 |
+
q, k, v, # (#tokens, n_heads, head_size)
|
1031 |
+
cu_seqlens_k,
|
1032 |
+
cu_seqlens_q,
|
1033 |
+
sm_scale,
|
1034 |
+
sparse_layout,
|
1035 |
+
*,
|
1036 |
+
block_size=64,
|
1037 |
+
max_seqlen = None
|
1038 |
+
):
|
1039 |
+
# split q to blocks
|
1040 |
+
_, n_heads, head_size = q.shape
|
1041 |
+
batch_size = cu_seqlens_k.size(0) - 1
|
1042 |
+
|
1043 |
+
|
1044 |
+
# print(f'> {q.shape=}, {k.shape=}')
|
1045 |
+
assert q.dim() == k.dim() == v.dim() == 3
|
1046 |
+
assert q.size(1) % k.size(1) == 0
|
1047 |
+
assert q.size(2) == k.size(2)
|
1048 |
+
assert k.shape == v.shape # TODO: allow diff head_size for k, v
|
1049 |
+
assert cu_seqlens_k.dim() == 1
|
1050 |
+
|
1051 |
+
q_k_ratio = q.size(1) // k.size(1)
|
1052 |
+
|
1053 |
+
if cu_seqlens_q is None:
|
1054 |
+
if q.size(0) == batch_size: # decoding only
|
1055 |
+
cu_seqlens_q = torch.arange(0, batch_size + 1,
|
1056 |
+
dtype=cu_seqlens_k.dtype,
|
1057 |
+
device=cu_seqlens_k.device)
|
1058 |
+
elif q.size(0) == k.size(0):
|
1059 |
+
cu_seqlens_q = cu_seqlens_k
|
1060 |
+
else:
|
1061 |
+
raise ValueError('cu_seqlens_q must be specified if it is mix of prefilling and decoding.')
|
1062 |
+
else:
|
1063 |
+
assert cu_seqlens_k.size(0) == cu_seqlens_q.size(0)
|
1064 |
+
|
1065 |
+
# switch to use cpu to avoid too many kernel lauch when iterate over
|
1066 |
+
q_lens = (cu_seqlens_q[1:] - cu_seqlens_q[:-1]).cpu()
|
1067 |
+
k_lens = (cu_seqlens_k[1:] - cu_seqlens_k[:-1]).cpu()
|
1068 |
+
|
1069 |
+
assert torch.logical_or(q_lens == 1, k_lens == q_lens).all(), \
|
1070 |
+
'length of q should either be 1 (decoding) or same as k (prefilling).'
|
1071 |
+
|
1072 |
+
if max_seqlen:
|
1073 |
+
assert k_lens.max() <= max_seqlen
|
1074 |
+
|
1075 |
+
n_blocks = (q_lens + block_size - 1) // block_size
|
1076 |
+
|
1077 |
+
q_batch_ids = torch.tensor([i for i, n in enumerate(n_blocks) for _ in range(n)],
|
1078 |
+
dtype=cu_seqlens_q.dtype,
|
1079 |
+
device=cu_seqlens_q.device)
|
1080 |
+
q_start_sids = torch.tensor([i * block_size for n in n_blocks for i in range(n)],
|
1081 |
+
dtype=cu_seqlens_q.dtype,
|
1082 |
+
device=cu_seqlens_q.device)
|
1083 |
+
|
1084 |
+
|
1085 |
+
out = q.new_empty(q.shape)
|
1086 |
+
cu_seqlens_q = cu_seqlens_q.contiguous()
|
1087 |
+
cu_seqlens_k = cu_seqlens_k.contiguous()
|
1088 |
+
|
1089 |
+
layout_crow_indices, layout_col_indices = sparse_layout
|
1090 |
+
block_d = triton.next_power_of_2(head_size)
|
1091 |
+
|
1092 |
+
decoding_only = (q_lens == 1).all()
|
1093 |
+
|
1094 |
+
grid = (len(q_start_sids), n_heads)
|
1095 |
+
|
1096 |
+
_fwd_kernel_batch_inference[grid](
|
1097 |
+
q, k, v, out,
|
1098 |
+
sm_scale,
|
1099 |
+
cu_seqlens_q[:-1],
|
1100 |
+
cu_seqlens_q[1:],
|
1101 |
+
cu_seqlens_k[:-1],
|
1102 |
+
cu_seqlens_k[1:],
|
1103 |
+
q_batch_ids,
|
1104 |
+
q_start_sids,
|
1105 |
+
|
1106 |
+
0, *q.stride(),
|
1107 |
+
0, *k.stride(),
|
1108 |
+
0, *v.stride(),
|
1109 |
+
0, *out.stride(),
|
1110 |
+
|
1111 |
+
layout_crow_indices,
|
1112 |
+
layout_col_indices,
|
1113 |
+
*layout_crow_indices.stride(),
|
1114 |
+
*layout_col_indices.stride(),
|
1115 |
+
|
1116 |
+
q_k_ratio,
|
1117 |
+
HAS_BATCH_DIM = False,
|
1118 |
+
D_HEAD = head_size,
|
1119 |
+
BLOCK_M = block_size,
|
1120 |
+
BLOCK_N = block_size,
|
1121 |
+
BLOCK_D = block_d,
|
1122 |
+
BLOCK_M_LOADING = 16 if decoding_only else block_size, # smaller for decoding
|
1123 |
+
EVEN_D = block_d == head_size,
|
1124 |
+
num_warps = 1 if decoding_only else 4,
|
1125 |
+
num_stages = 3
|
1126 |
+
)
|
1127 |
+
|
1128 |
+
return out
|
1129 |
+
|
1130 |
+
|
1131 |
+
@triton.jit
|
1132 |
+
def _fwd_kernel_inner(
|
1133 |
+
acc, l_i, m_i,
|
1134 |
+
q, Q,
|
1135 |
+
k_block_col_idx,
|
1136 |
+
layout_col_ptr,
|
1137 |
+
layout_col_stride_h, layout_col_stride_m,
|
1138 |
+
k_ptrs,
|
1139 |
+
v_ptrs,
|
1140 |
+
off_h, offs_m, offs_n, offs_d,
|
1141 |
+
stride_kt, stride_vt,
|
1142 |
+
sm_scale,
|
1143 |
+
k_seqlen,
|
1144 |
+
past_len,
|
1145 |
+
LAST_K_BLOCK: tl.constexpr,
|
1146 |
+
BLOCK_M_LOADING: tl.constexpr,
|
1147 |
+
BLOCK_N: tl.constexpr,
|
1148 |
+
D_HEAD: tl.constexpr,
|
1149 |
+
EVEN_D: tl.constexpr,
|
1150 |
+
M_LT_N: tl.constexpr
|
1151 |
+
):
|
1152 |
+
k_block_id = tl.load(layout_col_ptr + off_h * layout_col_stride_h + k_block_col_idx * layout_col_stride_m).to(tl.int32)
|
1153 |
+
start_n = k_block_id * BLOCK_N
|
1154 |
+
# -- compute qk ----
|
1155 |
+
if LAST_K_BLOCK:
|
1156 |
+
if EVEN_D:
|
1157 |
+
k = tl.load(k_ptrs + start_n * stride_kt,
|
1158 |
+
mask=offs_n[None, :] + start_n < k_seqlen)
|
1159 |
+
else:
|
1160 |
+
# mask = mask & (offs_d[:, ])
|
1161 |
+
k = tl.load(k_ptrs + start_n * stride_kt,
|
1162 |
+
mask=(offs_n[None, :] + start_n < k_seqlen) & (offs_d[:, None] < D_HEAD))
|
1163 |
+
else:
|
1164 |
+
if EVEN_D:
|
1165 |
+
k = tl.load(k_ptrs + start_n * stride_kt)
|
1166 |
+
else:
|
1167 |
+
k = tl.load(k_ptrs + start_n * stride_kt,
|
1168 |
+
mask=offs_d[:, None] < D_HEAD)
|
1169 |
+
|
1170 |
+
|
1171 |
+
qk = tl.zeros([BLOCK_M_LOADING, BLOCK_N], dtype=tl.float32)
|
1172 |
+
qk += tl.dot(q, k)
|
1173 |
+
|
1174 |
+
qk *= sm_scale
|
1175 |
+
|
1176 |
+
# the following is needed only when LAST_K_BLOCK or BLOCK_M < BLOCK_N
|
1177 |
+
if LAST_K_BLOCK | M_LT_N:
|
1178 |
+
qk += tl.where(offs_m[:, None] + past_len >= (start_n + offs_n[None, :]), 0, float('-inf'))
|
1179 |
+
|
1180 |
+
# -- compute m_ij, p, l_ij
|
1181 |
+
m_ij = tl.max(qk, 1)
|
1182 |
+
p = tl.exp(qk - m_ij[:, None])
|
1183 |
+
|
1184 |
+
l_ij = tl.sum(p, 1)
|
1185 |
+
# -- update m_i and l_i
|
1186 |
+
m_i_new = tl.maximum(m_i, m_ij)
|
1187 |
+
alpha = tl.exp(m_i - m_i_new)
|
1188 |
+
beta = tl.exp(m_ij - m_i_new)
|
1189 |
+
l_i_new = alpha * l_i + beta * l_ij
|
1190 |
+
# -- update output accumulator --
|
1191 |
+
# scale p
|
1192 |
+
p_scale = beta / l_i_new
|
1193 |
+
p = p * p_scale[:, None]
|
1194 |
+
# scale acc
|
1195 |
+
acc_scale = l_i / l_i_new * alpha
|
1196 |
+
acc = acc * acc_scale[:, None]
|
1197 |
+
|
1198 |
+
p = p.to(Q.dtype.element_ty)
|
1199 |
+
# update acc
|
1200 |
+
if LAST_K_BLOCK:
|
1201 |
+
if EVEN_D:
|
1202 |
+
v = tl.load(v_ptrs + start_n * stride_vt,
|
1203 |
+
mask=offs_n[:, None] + start_n < k_seqlen)
|
1204 |
+
else:
|
1205 |
+
v = tl.load(v_ptrs + start_n * stride_vt,
|
1206 |
+
mask=(offs_n[:, None] + start_n < k_seqlen) & (offs_d[None, :] < D_HEAD))
|
1207 |
+
else:
|
1208 |
+
if EVEN_D:
|
1209 |
+
v = tl.load(v_ptrs + start_n * stride_vt)
|
1210 |
+
else:
|
1211 |
+
v = tl.load(v_ptrs + start_n * stride_vt,
|
1212 |
+
mask=offs_d[None, :] < D_HEAD)
|
1213 |
+
|
1214 |
+
acc += tl.dot(p, v)
|
1215 |
+
# update m_i and l_i
|
1216 |
+
l_i = l_i_new
|
1217 |
+
m_i = m_i_new
|
1218 |
+
return acc, l_i, m_i
|
1219 |
+
|
1220 |
+
|
1221 |
+
@triton.heuristics(
|
1222 |
+
{
|
1223 |
+
'M_LT_N': lambda kwargs: kwargs['BLOCK_M'] < kwargs['BLOCK_N'],
|
1224 |
+
}
|
1225 |
+
)
|
1226 |
+
@triton.jit
|
1227 |
+
def _fwd_kernel_batch_inference(
|
1228 |
+
Q, K, V, Out,
|
1229 |
+
|
1230 |
+
sm_scale,
|
1231 |
+
q_batch_starts,
|
1232 |
+
q_batch_ends,
|
1233 |
+
k_batch_starts,
|
1234 |
+
k_batch_ends,
|
1235 |
+
q_batch_ids,
|
1236 |
+
q_start_sids,
|
1237 |
+
|
1238 |
+
stride_qb, stride_qt, stride_qh, stride_qd,
|
1239 |
+
stride_kb, stride_kt, stride_kh, stride_kd,
|
1240 |
+
stride_vb, stride_vt, stride_vh, stride_vd,
|
1241 |
+
stride_ob, stride_ot, stride_oh, stride_od,
|
1242 |
+
|
1243 |
+
layout_crow_ptr,
|
1244 |
+
layout_col_ptr,
|
1245 |
+
layout_crow_stride_h, layout_crow_stride_m,
|
1246 |
+
layout_col_stride_h, layout_col_stride_m,
|
1247 |
+
|
1248 |
+
q_k_ratio,
|
1249 |
+
|
1250 |
+
HAS_BATCH_DIM: tl.constexpr,
|
1251 |
+
D_HEAD: tl.constexpr,
|
1252 |
+
BLOCK_M: tl.constexpr,
|
1253 |
+
BLOCK_N: tl.constexpr,
|
1254 |
+
BLOCK_D: tl.constexpr,
|
1255 |
+
BLOCK_M_LOADING: tl.constexpr,
|
1256 |
+
EVEN_D: tl.constexpr,
|
1257 |
+
M_LT_N: tl.constexpr
|
1258 |
+
):
|
1259 |
+
'''
|
1260 |
+
NOTATION:
|
1261 |
+
pid: position id
|
1262 |
+
sid: storage id
|
1263 |
+
sbid: storage block id
|
1264 |
+
pbid: position block id
|
1265 |
+
offs_m, offs_n: storage offsets of m-dim(q, row) and n-dim(k, col)
|
1266 |
+
|
1267 |
+
q and blocks in KV needs to be contiguous
|
1268 |
+
|
1269 |
+
Arguments:
|
1270 |
+
kv_seq_lens: for compute past_len
|
1271 |
+
kv_storage_offsets: similar to block_tables in vllm, except it is dynamic.
|
1272 |
+
TODO: fix this
|
1273 |
+
|
1274 |
+
TODO:
|
1275 |
+
Optimize grouped-attn
|
1276 |
+
|
1277 |
+
CUDA graph support issue
|
1278 |
+
1. grid is dynamic: vllm set up multiple cuda graph in decoding phase, with diff max token size (16, 32, ...)
|
1279 |
+
since we mix prompt and decoing phase here, it can be more complex.
|
1280 |
+
need to set up diff cuda-graph for diff (off_zm, off_z)
|
1281 |
+
|
1282 |
+
# indeed, q_batch_ids can be padded to maximum number of grid[0], i.e., assume all decoding
|
1283 |
+
therefore, cu_seqlens_q, kv_seq_lens
|
1284 |
+
|
1285 |
+
'''
|
1286 |
+
off_zm = tl.program_id(0)
|
1287 |
+
off_h = tl.program_id(1)
|
1288 |
+
|
1289 |
+
off_h_for_kv = off_h // q_k_ratio
|
1290 |
+
off_z = tl.load(q_batch_ids + off_zm).to(tl.int32) # [0, 0, 0, 1]
|
1291 |
+
q_start_sid = tl.load(q_start_sids + off_zm)
|
1292 |
+
start_m = q_start_sid // BLOCK_M
|
1293 |
+
|
1294 |
+
if HAS_BATCH_DIM:
|
1295 |
+
Q += off_z * stride_qb
|
1296 |
+
K += off_z * stride_kb
|
1297 |
+
V += off_z * stride_vb
|
1298 |
+
Out += off_z * stride_ob
|
1299 |
+
|
1300 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M_LOADING)
|
1301 |
+
offs_n = tl.arange(0, BLOCK_N)
|
1302 |
+
offs_d = tl.arange(0, BLOCK_D)
|
1303 |
+
|
1304 |
+
q_cu_start = tl.load(q_batch_starts + off_z).to(tl.int32)
|
1305 |
+
q_seqlen = tl.load(q_batch_ends + off_z).to(tl.int32) - q_cu_start
|
1306 |
+
|
1307 |
+
k_cu_start = tl.load(k_batch_starts + off_z).to(tl.int32)
|
1308 |
+
k_seqlen = tl.load(k_batch_ends + off_z).to(tl.int32) - k_cu_start
|
1309 |
+
|
1310 |
+
past_len = k_seqlen - q_seqlen
|
1311 |
+
|
1312 |
+
Q += q_cu_start * stride_qt + off_h * stride_qh
|
1313 |
+
K += k_cu_start * stride_kt + off_h_for_kv * stride_kh
|
1314 |
+
V += k_cu_start * stride_vt + off_h_for_kv * stride_vh
|
1315 |
+
Out += q_cu_start * stride_ot + off_h * stride_oh
|
1316 |
+
|
1317 |
+
q_pbid = (past_len + q_start_sid) // BLOCK_M
|
1318 |
+
|
1319 |
+
if EVEN_D:
|
1320 |
+
q = tl.load(Q + offs_m[:, None] * stride_qt + offs_d[None, :] * stride_qd,
|
1321 |
+
mask=offs_m[:, None] < q_seqlen)
|
1322 |
+
else:
|
1323 |
+
q = tl.load(Q + offs_m[:, None] * stride_qt + offs_d[None, :] * stride_qd,
|
1324 |
+
mask=(offs_m[:, None] < q_seqlen) & (offs_d[None, :] < D_HEAD),
|
1325 |
+
other=0)
|
1326 |
+
|
1327 |
+
sparse_crow_ptr = layout_crow_ptr + off_h * layout_crow_stride_h + q_pbid * layout_crow_stride_m
|
1328 |
+
|
1329 |
+
# TODO: load at once, supported in new Triton
|
1330 |
+
k_block_start = tl.load(sparse_crow_ptr).to(tl.int32)
|
1331 |
+
k_block_end = tl.load(sparse_crow_ptr + 1).to(tl.int32)
|
1332 |
+
|
1333 |
+
m_i = tl.zeros([BLOCK_M_LOADING], dtype=tl.float32) - float('inf')
|
1334 |
+
l_i = tl.zeros([BLOCK_M_LOADING], dtype=tl.float32)
|
1335 |
+
acc = tl.zeros([BLOCK_M_LOADING, BLOCK_D], dtype=tl.float32)
|
1336 |
+
|
1337 |
+
k_ptrs = K + offs_n[None, :] * stride_kt + offs_d[:, None] * stride_kd
|
1338 |
+
v_ptrs = V + offs_n[:, None] * stride_vt + offs_d[None, :] * stride_vd
|
1339 |
+
|
1340 |
+
for k_block_col_idx in range(k_block_start, k_block_end - 1):
|
1341 |
+
acc, l_i, m_i = _fwd_kernel_inner(
|
1342 |
+
acc, l_i, m_i,
|
1343 |
+
q, Q,
|
1344 |
+
k_block_col_idx,
|
1345 |
+
layout_col_ptr,
|
1346 |
+
layout_col_stride_h, layout_col_stride_m,
|
1347 |
+
k_ptrs,
|
1348 |
+
v_ptrs,
|
1349 |
+
off_h, offs_m, offs_n, offs_d,
|
1350 |
+
stride_kt, stride_vt,
|
1351 |
+
sm_scale,
|
1352 |
+
k_seqlen,
|
1353 |
+
past_len,
|
1354 |
+
False,
|
1355 |
+
BLOCK_M_LOADING,
|
1356 |
+
BLOCK_N,
|
1357 |
+
D_HEAD,
|
1358 |
+
EVEN_D,
|
1359 |
+
M_LT_N
|
1360 |
+
)
|
1361 |
+
|
1362 |
+
acc, l_i, m_i = _fwd_kernel_inner(
|
1363 |
+
acc, l_i, m_i,
|
1364 |
+
q, Q,
|
1365 |
+
k_block_end - 1,
|
1366 |
+
layout_col_ptr,
|
1367 |
+
layout_col_stride_h, layout_col_stride_m,
|
1368 |
+
k_ptrs,
|
1369 |
+
v_ptrs,
|
1370 |
+
off_h, offs_m, offs_n, offs_d,
|
1371 |
+
stride_kt, stride_vt,
|
1372 |
+
sm_scale,
|
1373 |
+
k_seqlen,
|
1374 |
+
past_len,
|
1375 |
+
True,
|
1376 |
+
BLOCK_M_LOADING,
|
1377 |
+
BLOCK_N,
|
1378 |
+
D_HEAD,
|
1379 |
+
EVEN_D,
|
1380 |
+
M_LT_N
|
1381 |
+
)
|
1382 |
+
|
1383 |
+
# write output
|
1384 |
+
if EVEN_D:
|
1385 |
+
tl.store(Out + offs_m[:, None] * stride_ot + offs_d[None, :] * stride_od, acc,
|
1386 |
+
mask=offs_m[:, None] < q_seqlen)
|
1387 |
+
else:
|
1388 |
+
tl.store(Out + offs_m[:, None] * stride_ot + offs_d[None, :] * stride_od, acc,
|
1389 |
+
mask=(offs_m[:, None] < q_seqlen) & (offs_d[None, :] < D_HEAD))
|
1390 |
+
|
1391 |
+
|
1392 |
+
###########################################################
|
1393 |
+
###########################################################
|
1394 |
+
|
1395 |
+
###########################################################
|
1396 |
+
################## Testing Utilities ######################
|
1397 |
+
###########################################################
|
1398 |
+
|
1399 |
+
|
1400 |
+
def torch_attention(q, k, v, attn_mask=None, sm_scale=None, block_attn_mask=None, block_size=128, do=None):
|
1401 |
+
'''
|
1402 |
+
q, k, v: shape=(batch, n_heads, seq, dim)
|
1403 |
+
'''
|
1404 |
+
# for verification
|
1405 |
+
if sm_scale is None:
|
1406 |
+
sm_scale = math.sqrt(float(q.size(-1)))
|
1407 |
+
|
1408 |
+
if block_attn_mask is not None:
|
1409 |
+
assert attn_mask is None
|
1410 |
+
outs = []
|
1411 |
+
for s in range(0, q.size(2), block_size):
|
1412 |
+
e = min(s + block_size, q.size(2))
|
1413 |
+
q_block = q[:, :, s:e]
|
1414 |
+
attn = torch.einsum('bhmd,bhnd->bhmn', q_block, k[:, :, :e]).float() * sm_scale
|
1415 |
+
mask = block_attn_mask[..., s // block_size, : (s // block_size + 1)]
|
1416 |
+
mask = torch.kron(mask, torch.ones(block_size, block_size, device=mask.device))
|
1417 |
+
mask[..., :, s:].masked_fill_(torch.arange(0, block_size)[:, None] <= torch.arange(0, block_size)[None, :], 0)
|
1418 |
+
attn = attn.masked_fill((1 - mask).bool(), float('-inf'))
|
1419 |
+
attn = attn.softmax(-1)
|
1420 |
+
out = torch.einsum('bhmn,bhnd->bhmd', attn.type_as(v), v[:, :, :e])
|
1421 |
+
outs.append(out)
|
1422 |
+
torch_output = torch.cat(outs, dim=2)
|
1423 |
+
else:
|
1424 |
+
attn = torch.einsum('bhmd,bhnd->bhmn', q, k).float() * sm_scale
|
1425 |
+
# import ipdb; ipdb.set_trace()
|
1426 |
+
if attn_mask is not None:
|
1427 |
+
attn = attn.masked_fill((1 - attn_mask).bool(), float('-inf'))
|
1428 |
+
# print(f'> torch attn: {attn.exp().sum(-1)=}')
|
1429 |
+
|
1430 |
+
attn = attn.softmax(-1)
|
1431 |
+
if do is not None:
|
1432 |
+
dv = torch.einsum('bhqk,bhqd->bhkd', attn.type_as(do), do)
|
1433 |
+
print(f'> torch_attn computed dv: {dv=}')
|
1434 |
+
torch_output = torch.einsum('bhmn,bhnd->bhmd', attn.type_as(v), v)
|
1435 |
+
return torch_output
|
1436 |
+
|
1437 |
+
###########################################################
|
1438 |
+
###########################################################
|
1439 |
+
|
1440 |
+
###########################################################
|
1441 |
+
#################### Unit Tests ###########################
|
1442 |
+
###########################################################
|
1443 |
+
|
1444 |
+
|
1445 |
+
@pytest.mark.parametrize('Z, H, N_CTX, D_HEAD', [(2, 8, 2048, 128), (1, 4, 4096, 64)])
|
1446 |
+
def test_op(Z, H, N_CTX, D_HEAD, Q_LEN=None, dtype=torch.bfloat16, homo_head=True, kernel_block_size=None, sparse_block_size=128, backward=True,
|
1447 |
+
sparse_attention_fn=None, local_blocks=4, vert_stride=4, sm_scale=None, max_length=None):
|
1448 |
+
Q_LEN = Q_LEN or N_CTX
|
1449 |
+
torch.manual_seed(20)
|
1450 |
+
q = torch.empty((Z, H, Q_LEN, D_HEAD), dtype=dtype, device='cuda').normal_(mean=0, std=.5) # .requires_grad_()
|
1451 |
+
k = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device='cuda').normal_(mean=0, std=.5) # .requires_grad_()
|
1452 |
+
v = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device='cuda').normal_(mean=0, std=.5) # .requires_grad_()
|
1453 |
+
|
1454 |
+
if sm_scale is None:
|
1455 |
+
sm_scale = 1. / math.sqrt(D_HEAD)
|
1456 |
+
|
1457 |
+
# for debugging
|
1458 |
+
# print(f'>> {q.shape=}, {k.shape=}, {v.shape=}, {homo_head=}, {kernel_block_size=}, {sparse_block_size=}, {local_blocks=}, {vert_stride=}')
|
1459 |
+
sm_scale = 0.0078125
|
1460 |
+
if backward:
|
1461 |
+
q.requires_grad_(), k.requires_grad_(), v.requires_grad_()
|
1462 |
+
|
1463 |
+
# qkv = torch.empty((Z, N_CTX, 3*H*D_HEAD), dtype=dtype, device='cuda').normal_(mean=0, std=.5)
|
1464 |
+
# q = qkv[..., :H*D_HEAD]
|
1465 |
+
# k = qkv[..., H*D_HEAD:2*H*D_HEAD]
|
1466 |
+
# v = qkv[..., 2*H*D_HEAD:]
|
1467 |
+
# q = q.view(Z, N_CTX, H, -1).permute(0, 2, 1, 3)
|
1468 |
+
# k = k.view(Z, N_CTX, H, -1).permute(0, 2, 1, 3)
|
1469 |
+
# v = v.view(Z, N_CTX, H, -1).permute(0, 2, 1, 3)
|
1470 |
+
|
1471 |
+
# if Q_LEN and Q_LEN < N_CTX:
|
1472 |
+
# q = q[:, :, -Q_LEN:] # .contiguous()
|
1473 |
+
|
1474 |
+
# q = q.requires_grad_()
|
1475 |
+
# k = k.requires_grad_()
|
1476 |
+
# v = v.requires_grad_()
|
1477 |
+
|
1478 |
+
dout = torch.randn_like(q).contiguous()
|
1479 |
+
|
1480 |
+
# dout = torch.eye(N_CTX)[:, :D_HEAD][None, None].expand_as(q).type_as(q).contiguous()
|
1481 |
+
# print(dout)
|
1482 |
+
|
1483 |
+
mask_csr, _, mask_dense = get_sparse_attn_mask(q, N_CTX, BLOCK=sparse_block_size,
|
1484 |
+
local_blocks=local_blocks, vert_stride=vert_stride, homo_head=homo_head, return_dense=True)
|
1485 |
+
|
1486 |
+
if sparse_attention_fn is None:
|
1487 |
+
sparse_attention_fn = get_local_strided_sparse_attention_op(H, N_CTX,
|
1488 |
+
sparse_block_size=sparse_block_size,
|
1489 |
+
local_blocks=local_blocks,
|
1490 |
+
vert_stride=vert_stride,
|
1491 |
+
homo_head=homo_head,
|
1492 |
+
device=q.device,
|
1493 |
+
dtype=q.dtype,
|
1494 |
+
kernel_block_size=kernel_block_size)
|
1495 |
+
# reference implementation
|
1496 |
+
ref_out = torch_attention(q, k, v, mask_dense, sm_scale)
|
1497 |
+
|
1498 |
+
# lengths = torch.full((Z,), fill_value=N_CTX, device='cuda')
|
1499 |
+
# cu_seqlens = torch.zeros((Z + 1,), device='cuda', dtype=torch.int32)
|
1500 |
+
# cu_seqlens[1:] = lengths.cumsum(0)
|
1501 |
+
# # qkv = torch.randn((Z * N_CTX, 3, H, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
|
1502 |
+
|
1503 |
+
# qkv_list = list(map(lambda x: x.permute(0, 2, 1, 3).contiguous().view(Z * N_CTX, 1, H, D_HEAD), [q, k, v]))
|
1504 |
+
# qkv = torch.cat(qkv_list, dim=1)
|
1505 |
+
# ref_out0 = flash_attn_func(qkv, cu_seqlens, dropout_p=0, max_s=N_CTX, softmax_scale=sm_scale, causal=True)
|
1506 |
+
# ref_out = ref_out0.view(Z, N_CTX, H, D_HEAD).permute(0, 2, 1, 3).contiguous()
|
1507 |
+
|
1508 |
+
|
1509 |
+
if backward:
|
1510 |
+
ref_out.backward(dout)
|
1511 |
+
ref_dv, v.grad = v.grad.clone(), None
|
1512 |
+
ref_dk, k.grad = k.grad.clone(), None
|
1513 |
+
ref_dq, q.grad = q.grad.clone(), None
|
1514 |
+
|
1515 |
+
tri_out = sparse_attention_fn(q, k, v, sm_scale)
|
1516 |
+
|
1517 |
+
decimal = 1 if dtype == torch.bfloat16 else 2
|
1518 |
+
assert torch.allclose(ref_out.cpu(), tri_out.cpu(), atol=1e-2, rtol=0), f'>> {ref_out[0, 0, :, 0].tolist()=}\n\n{tri_out[0, 0, :, 0].tolist()=}'
|
1519 |
+
|
1520 |
+
if backward:
|
1521 |
+
tri_out.backward(dout)
|
1522 |
+
tri_dv, v.grad = v.grad.clone(), None
|
1523 |
+
tri_dk, k.grad = k.grad.clone(), None
|
1524 |
+
tri_dq, q.grad = q.grad.clone(), None
|
1525 |
+
|
1526 |
+
if backward:
|
1527 |
+
assert torch.allclose(ref_dv, tri_dv, atol=1e-2, rtol=1e-2)
|
1528 |
+
assert torch.allclose(ref_dk, tri_dk, atol=1e-2, rtol=0)
|
1529 |
+
assert torch.allclose(ref_dq, tri_dq, atol=1e-2, rtol=0)
|
1530 |
+
|
1531 |
+
print(f'> test passed: {Z=}, {H=}, {N_CTX=}, {D_HEAD=}, {Q_LEN=}, {dtype=}, {homo_head=}, {sparse_block_size=}')
|
1532 |
+
|
1533 |
+
###########################################################
|
1534 |
+
|
1535 |
+
if __name__ == '__main__':
|
1536 |
+
|
1537 |
+
GPU_TYPE = os.popen('nvidia-smi --query-gpu=name --format=csv | tail -n 1').read().strip()
|
1538 |
+
# print(GPU_TYPE)
|
1539 |
+
support_backward = True # 'A100' in GPU_TYPE. Wasn't supportted in consumer A1000.
|
1540 |
+
|
1541 |
+
###############
|
1542 |
+
# benchmarking
|
1543 |
+
|
1544 |
+
HAS_DENSE_TRITON_FLASH = False
|
1545 |
+
# try:
|
1546 |
+
# from triton.ops.flash_attention import attention as triton_attention
|
1547 |
+
# HAS_DENSE_TRITON_FLASH = True
|
1548 |
+
# except:
|
1549 |
+
# HAS_DENSE_TRITON_FLASH = False
|
1550 |
+
# print('> cannot import Trition flash attn')
|
1551 |
+
|
1552 |
+
try:
|
1553 |
+
from flash_attn.flash_attn_interface import flash_attn_func, flash_attn_unpadded_func
|
1554 |
+
HAS_FLASH = True
|
1555 |
+
except BaseException:
|
1556 |
+
HAS_FLASH = False
|
1557 |
+
print('> cannot import flash_attn')
|
1558 |
+
|
1559 |
+
|
1560 |
+
# BATCH, N_HEADS, N_CTX, D_HEAD = 4, 48, 4096, 64
|
1561 |
+
BATCH, N_HEADS, N_CTX, D_HEAD = 4, 32, 4096, 128 # 6.7B model, with 4k len
|
1562 |
+
# BATCH, N_HEADS, N_CTX, D_HEAD = 4, 16, 4096, 128 # 204m model
|
1563 |
+
|
1564 |
+
BLOCK_SIZE = 64
|
1565 |
+
LOCAl_BLOCKS = 8 # 4
|
1566 |
+
VERT_STRIDE = 1 # 16 # 8
|
1567 |
+
HOMO_HEAD = False
|
1568 |
+
sparse_type = 'home' if HOMO_HEAD else 'hetero'
|
1569 |
+
dtype = torch.bfloat16
|
1570 |
+
|
1571 |
+
|
1572 |
+
modes = ['fwd', 'bwd'] if support_backward else ['fwd']
|
1573 |
+
|
1574 |
+
configs = [triton.testing.Benchmark(
|
1575 |
+
x_names=['SEQ_LEN'],
|
1576 |
+
x_vals=[2**i for i in range(8, 16)],
|
1577 |
+
line_arg='provider',
|
1578 |
+
line_vals=(['triton'] if HAS_DENSE_TRITON_FLASH else []) + (['flash'] if HAS_FLASH else []) + ['triton_sparse'],
|
1579 |
+
line_names=(['Triton-Dense'] if HAS_DENSE_TRITON_FLASH else []) + (['Flash-Dense'] if HAS_FLASH else []) + ['Triton-Sparse'],
|
1580 |
+
styles=[('red', '-'), ('blue', '-'), ('green', '-')],
|
1581 |
+
ylabel='ms',
|
1582 |
+
plot_name=f'fused-attention-batch{BATCH}-head{N_HEADS}-d{D_HEAD}-sparse-local{LOCAl_BLOCKS}-vert{VERT_STRIDE}-{sparse_type}-{dtype}-{mode}',
|
1583 |
+
args={'H': N_HEADS, 'BATCH': BATCH, 'D_HEAD': D_HEAD, 'dtype': dtype, 'mode': mode}
|
1584 |
+
) for mode in modes]
|
1585 |
+
|
1586 |
+
|
1587 |
+
@triton.testing.perf_report(configs)
|
1588 |
+
def bench_flash_attention(BATCH, H, SEQ_LEN, D_HEAD, mode, provider, dtype=torch.bfloat16, device='cuda', sparse_attention_fn=None):
|
1589 |
+
assert mode in ['fwd', 'bwd']
|
1590 |
+
warmup = 25
|
1591 |
+
rep = 100
|
1592 |
+
N_CTX = SEQ_LEN
|
1593 |
+
if provider == 'triton':
|
1594 |
+
q = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
|
1595 |
+
k = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
|
1596 |
+
v = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
|
1597 |
+
sm_scale = 1.3
|
1598 |
+
fn = lambda: triton_attention(q, k, v, sm_scale)
|
1599 |
+
if mode == 'bwd':
|
1600 |
+
o = fn()
|
1601 |
+
do = torch.randn_like(o)
|
1602 |
+
fn = lambda: o.backward(do, retain_graph=True)
|
1603 |
+
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
|
1604 |
+
return ms
|
1605 |
+
if provider == 'triton_sparse':
|
1606 |
+
q = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
|
1607 |
+
k = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
|
1608 |
+
v = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
|
1609 |
+
sm_scale = 1.3
|
1610 |
+
# q_pos = torch.arange(N_CTX // BLOCK, device='cuda')[:, None]
|
1611 |
+
# k_pos = torch.arange(N_CTX // BLOCK, device='cuda')[None]
|
1612 |
+
# local_blocks = 4 # num_block per attn, block_size is tied to BLOCK
|
1613 |
+
# vert_stride =N_CTX + 1 # 4
|
1614 |
+
# mask_vert_strided = torch.arange(N_CTX // BLOCK, device='cuda') % vert_stride == vert_stride - 1
|
1615 |
+
# mask_dense = ((q_pos >= k_pos) & ((q_pos - k_pos < local_blocks) | mask_vert_strided)).type_as(q)
|
1616 |
+
# mask = mask_dense.to_sparse_csr()
|
1617 |
+
# mask_csr, _ = get_sparse_attn_mask(q, N_CTX, BLOCK=BLOCK, local_blocks=LOCAl_BLOCKS, vert_stride=VERT_STRIDE, homo_head=HOMO_HEAD)
|
1618 |
+
|
1619 |
+
if sparse_attention_fn is None:
|
1620 |
+
# sparse_attention_fn = sparse_attention
|
1621 |
+
sparse_attention_fn = get_local_strided_sparse_attention_op(H, SEQ_LEN,
|
1622 |
+
local_blocks=LOCAl_BLOCKS,
|
1623 |
+
vert_stride=VERT_STRIDE,
|
1624 |
+
homo_head=HOMO_HEAD,
|
1625 |
+
sparse_block_size=BLOCK_SIZE,
|
1626 |
+
kernel_block_size=BLOCK_SIZE,
|
1627 |
+
device=q.device)
|
1628 |
+
# sparse_attention_fn = sparse_attention_factory(128, 128, num_warps=8)
|
1629 |
+
|
1630 |
+
# fn = lambda: sparse_attention_fn(q, k, v, mask_csr[0], mask_csr[1], sm_scale)
|
1631 |
+
fn = lambda: sparse_attention_fn(q, k, v, sm_scale)
|
1632 |
+
if mode == 'bwd':
|
1633 |
+
o = fn()
|
1634 |
+
do = torch.randn_like(o)
|
1635 |
+
fn = lambda: o.backward(do, retain_graph=True)
|
1636 |
+
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
|
1637 |
+
return ms
|
1638 |
+
if provider == 'flash':
|
1639 |
+
lengths = torch.full((BATCH,), fill_value=N_CTX, device=device)
|
1640 |
+
cu_seqlens = torch.zeros((BATCH + 1,), device=device, dtype=torch.int32)
|
1641 |
+
cu_seqlens[1:] = lengths.cumsum(0)
|
1642 |
+
qkv = torch.randn((BATCH * N_CTX, 3, H, D_HEAD), dtype=dtype, device=device, requires_grad=True)
|
1643 |
+
fn = lambda: flash_attn_func(qkv, cu_seqlens, 0., N_CTX, causal=True)
|
1644 |
+
if mode == 'bwd':
|
1645 |
+
o = fn()
|
1646 |
+
do = torch.randn_like(o)
|
1647 |
+
fn = lambda: o.backward(do, retain_graph=True)
|
1648 |
+
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
|
1649 |
+
return ms
|
1650 |
+
|
1651 |
+
# if provider == 'torch':
|
1652 |
+
# q = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
|
1653 |
+
# k = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
|
1654 |
+
# v = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=True)
|
1655 |
+
# sm_scale = 1.3
|
1656 |
+
# causal_mask = torch.tril(torch.ones(N_CTX, N_CTX)).type_as(q)
|
1657 |
+
# fn = lambda: torch_attention(q, k, v, causal_mask, sm_scale)
|
1658 |
+
# ms = triton.testing.do_bench(fn, percentiles=None, warmup=warmup, rep=rep)
|
1659 |
+
# return ms
|
1660 |
+
|
1661 |
+
|
1662 |
+
BATCH, N_HEADS, N_CTX, D_HEAD, Q_LEN = 4, 32, 4096, 128, 1 # 6.7B model, with 4k len
|
1663 |
+
|
1664 |
+
BLOCK_SIZE = 64
|
1665 |
+
LOCAl_BLOCKS = 8 # 4
|
1666 |
+
VERT_STRIDE = 16 # 8
|
1667 |
+
HOMO_HEAD = False
|
1668 |
+
sparse_type = 'home' if HOMO_HEAD else 'hetero'
|
1669 |
+
dtype = torch.bfloat16
|
1670 |
+
MAX_N_CTX = 8192
|
1671 |
+
|
1672 |
+
configs = [triton.testing.Benchmark(
|
1673 |
+
x_names=['PAST_LEN'],
|
1674 |
+
x_vals=[2**i - 1 for i in range(8, 14)],
|
1675 |
+
line_arg='provider',
|
1676 |
+
line_vals=['torch'] + (['flash'] if HAS_FLASH else []) + ['triton_sparse', 'triton_dense'],
|
1677 |
+
line_names=['Torch'] + (['Flash-Dense'] if HAS_FLASH else []) + ['Triton-Sparse', 'Triton-Dense'],
|
1678 |
+
styles=[('red', '-'), ('blue', '-'), ('green', '-'), ('cyan', '-')],
|
1679 |
+
ylabel='ms',
|
1680 |
+
plot_name=f'fused-attention-inference-batch{BATCH}-head{N_HEADS}-d{D_HEAD}-sparse-local{LOCAl_BLOCKS}-vert{VERT_STRIDE}-{sparse_type}',
|
1681 |
+
args={'H': N_HEADS, 'BATCH': BATCH, 'D_HEAD': D_HEAD, 'Q_LEN': Q_LEN, 'dtype': torch.float16, 'mode': mode}
|
1682 |
+
) for mode in ['fwd']]
|
1683 |
+
@triton.testing.perf_report(configs)
|
1684 |
+
def bench_flash_attention_inference(BATCH, H, PAST_LEN, D_HEAD, Q_LEN, mode, provider, dtype=torch.bfloat16, device='cuda'):
|
1685 |
+
assert mode in ['fwd']
|
1686 |
+
warmup = 25
|
1687 |
+
rep = 100
|
1688 |
+
N_CTX = PAST_LEN + Q_LEN
|
1689 |
+
if provider == 'torch':
|
1690 |
+
q = torch.randn((BATCH, H, Q_LEN, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
|
1691 |
+
k = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
|
1692 |
+
v = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
|
1693 |
+
sm_scale = 1.3
|
1694 |
+
mask_csr, _, mask_dense = get_sparse_attn_mask(q, N_CTX, BLOCK=BLOCK_SIZE,
|
1695 |
+
local_blocks=LOCAl_BLOCKS, vert_stride=VERT_STRIDE, homo_head=VERT_STRIDE, return_dense=True)
|
1696 |
+
|
1697 |
+
fn = lambda: torch_attention(q, k, v, mask_dense, sm_scale=sm_scale, block_size=2048)
|
1698 |
+
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
|
1699 |
+
return ms
|
1700 |
+
if provider == 'triton_sparse':
|
1701 |
+
q = torch.randn((BATCH, H, Q_LEN, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
|
1702 |
+
k = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
|
1703 |
+
v = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
|
1704 |
+
sm_scale = 1.3
|
1705 |
+
sparse_attention_fn = get_local_strided_sparse_attention_op(H, MAX_N_CTX,
|
1706 |
+
local_blocks=LOCAl_BLOCKS,
|
1707 |
+
vert_stride=VERT_STRIDE,
|
1708 |
+
homo_head=HOMO_HEAD,
|
1709 |
+
sparse_block_size=BLOCK_SIZE,
|
1710 |
+
kernel_block_size=BLOCK_SIZE,
|
1711 |
+
device=q.device,
|
1712 |
+
inference=True)
|
1713 |
+
|
1714 |
+
fn = lambda: sparse_attention_fn(q, k, v, sm_scale)
|
1715 |
+
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
|
1716 |
+
return ms
|
1717 |
+
if provider == 'triton_dense':
|
1718 |
+
q = torch.randn((BATCH, H, Q_LEN, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
|
1719 |
+
k = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
|
1720 |
+
v = torch.randn((BATCH, H, N_CTX, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
|
1721 |
+
sm_scale = 1.3
|
1722 |
+
sparse_attention_fn = get_local_strided_sparse_attention_op(H, MAX_N_CTX,
|
1723 |
+
local_blocks=1,
|
1724 |
+
vert_stride=1,
|
1725 |
+
homo_head=True,
|
1726 |
+
sparse_block_size=BLOCK_SIZE,
|
1727 |
+
kernel_block_size=BLOCK_SIZE,
|
1728 |
+
device=q.device,
|
1729 |
+
inference=True)
|
1730 |
+
|
1731 |
+
fn = lambda: sparse_attention_fn(q, k, v, sm_scale)
|
1732 |
+
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
|
1733 |
+
return ms
|
1734 |
+
if provider == 'flash':
|
1735 |
+
assert Q_LEN == 1
|
1736 |
+
lengths = torch.full((BATCH,), fill_value=N_CTX, device=device)
|
1737 |
+
cu_seqlens = torch.zeros((BATCH + 1,), device=device, dtype=torch.int32)
|
1738 |
+
cu_seqlens[1:] = lengths.cumsum(0)
|
1739 |
+
cu_seqlens_q = torch.arange(BATCH + 1, device=device, dtype=torch.int32)
|
1740 |
+
|
1741 |
+
# (total_q, nheads, headdim),
|
1742 |
+
q = torch.randn((BATCH, H, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
|
1743 |
+
k = torch.randn((BATCH*N_CTX, H, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
|
1744 |
+
v = torch.randn((BATCH*N_CTX, H, D_HEAD), dtype=dtype, device='cuda', requires_grad=False)
|
1745 |
+
|
1746 |
+
fn = lambda: flash_attn_unpadded_func(q, k, v, cu_seqlens_q, cu_seqlens, 1, N_CTX, dropout_p=0, softmax_scale=1.3, causal=False)
|
1747 |
+
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
|
1748 |
+
return ms
|
1749 |
+
|
1750 |
+
|
1751 |
+
test_op(1, 4, 512, 128, dtype=torch.float16, homo_head=False, backward=support_backward)
|
1752 |
+
# bench_flash_attention.run(save_path='.', print_data=True)
|
1753 |
+
|
1754 |
+
bench_flash_attention_inference.run(save_path='.', print_data=True)
|
1755 |
+
exit()
|
1756 |
+
# head_dim=64
|
1757 |
+
test_op(1, 2, 1024, 64, kernel_block_size=64, sparse_block_size=64,
|
1758 |
+
dtype=torch.bfloat16, homo_head=False, backward=support_backward)
|
1759 |
+
# uneven length, bf16
|
1760 |
+
test_op(1, 16, 224, 128, dtype=torch.bfloat16, homo_head=False, backward=False, sparse_block_size=128,
|
1761 |
+
kernel_block_size=64, local_blocks=8, vert_stride=8)
|
1762 |
+
test_op(3, 2, 2047, 128, homo_head=False, backward=False)
|
1763 |
+
|
1764 |
+
# diff kernel/sparse block size
|
1765 |
+
test_op(1, 16, 224, 128, dtype=torch.bfloat16, homo_head=False, backward=False, kernel_block_size=64)
|
1766 |
+
# inference
|
1767 |
+
# test_op(1, 4, 512 + 256, 128, Q_LEN=1, dtype=torch.bfloat16, homo_head=False, backward=support_backward)
|
1768 |
+
|
1769 |
+
# dense flash attn
|
1770 |
+
test_op(1, 2, 1024, 128, kernel_block_size=128, sparse_block_size=128, dtype=torch.bfloat16, homo_head=False,
|
1771 |
+
backward=support_backward, local_blocks=1, vert_stride=1)
|
1772 |
+
|
1773 |
+
# fp16
|
1774 |
+
test_op(1, 4, 512 + 256, 128, dtype=torch.float16, homo_head=False, backward=support_backward)
|
1775 |
+
|
1776 |
+
# longer sequence
|
1777 |
+
test_op(2, 4, 8192, 64, homo_head=False, backward=support_backward)
|
1778 |
+
test_op(2, 4, 8192, 128, dtype=torch.bfloat16, homo_head=False, backward=support_backward)
|
1779 |
+
|
1780 |
+
# homo head
|
1781 |
+
test_op(3, 2, 2048, 64, homo_head=True, dtype=torch.bfloat16, backward=False)
|
1782 |
+
test_op(3, 2, 2048, 64, homo_head=True, backward=support_backward)
|
1783 |
+
|
1784 |
+
# sparse_attention_fn = sparse_attention_factory(16, 128, num_warps=1, INFERENCE=True)
|
1785 |
+
# test_op(8, 1, 2047, 128, 1, backward=False, sparse_attention_fn=None)
|
1786 |
+
# test_op_inference(3, 2, 2048, 128, 2048)
|
1787 |
+
# test_op_inference(3, 2, 2047, 64, 2047)
|
1788 |
+
# test_op_inference(3, 2, 256, 64, 128)
|
1789 |
+
# test_op_inference(3, 2, 2048, 64, 1)
|
1790 |
+
|
1791 |
+
bench_flash_attention.run(save_path='.', print_data=True)
|
1792 |
+
# bench_flash_attention_inference.run(save_path='.', print_data=True)
|
1793 |
+
|
1794 |
+
# ========================
|
1795 |
+
# Some Benchmark Results #
|
1796 |
+
# ========================
|
1797 |
+
|
1798 |
+
# fused-attention-batch4-head48-d64-sparse-local4-vert4-hetero-fwd
|
1799 |
+
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
|
1800 |
+
# 0 256.0 0.057184 0.069646 0.052567
|
1801 |
+
# 1 512.0 0.131688 0.187658 0.110212
|
1802 |
+
# 2 1024.0 0.391844 0.524990 0.247875
|
1803 |
+
# 3 2048.0 1.305190 1.456685 0.596506
|
1804 |
+
# 4 4096.0 4.623019 4.968653 1.600277
|
1805 |
+
# 5 8192.0 17.513062 18.332262 4.802458
|
1806 |
+
# 6 16384.0 68.453377 70.337540 16.052908
|
1807 |
+
# 7 32768.0 270.655487 276.020233 57.938946
|
1808 |
+
# fused-attention-batch4-head48-d64-sparse-local4-vert4-hetero-bwd (num_warp=8):
|
1809 |
+
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
|
1810 |
+
# 0 256.0 0.190120 0.150313 0.181451
|
1811 |
+
# 1 512.0 0.406348 0.391767 0.391177
|
1812 |
+
# 2 1024.0 1.029704 1.182967 0.885741
|
1813 |
+
# 3 2048.0 2.985456 3.843399 2.040469
|
1814 |
+
# 4 4096.0 9.808897 13.073701 5.069609
|
1815 |
+
# 5 8192.0 34.995201 47.863808 13.948782
|
1816 |
+
# 6 16384.0 132.740097 182.579193 42.816513
|
1817 |
+
# 7 32768.0 542.223389 714.820618 147.053574
|
1818 |
+
# fused-attention-inference-batch4-head32-d128-sparse-local4-vert4-hetero:
|
1819 |
+
# PAST_LEN Torch-Dense Flash-Dense Triton-Sparse
|
1820 |
+
# 0 256.0 0.050949 0.032357 0.107513
|
1821 |
+
# 1 512.0 0.073624 0.050651 0.199086
|
1822 |
+
# 2 1024.0 0.107472 0.080379 0.245445
|
1823 |
+
# 3 2048.0 0.178423 0.129448 0.338259
|
1824 |
+
# 4 4096.0 0.327647 0.223106 0.517048
|
1825 |
+
# 5 8192.0 0.588423 0.411263 0.884606
|
1826 |
+
# 6 16384.0 1.098898 0.798941 1.611809
|
1827 |
+
# 7 32768.0 2.094537 1.594726 3.044160
|
1828 |
+
|
1829 |
+
|
1830 |
+
# 6.7B
|
1831 |
+
# fused-attention-batch4-head32-d128-sparse-local4-vert4-hetero-fwd:
|
1832 |
+
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
|
1833 |
+
# 0 256.0 0.069208 0.082156 0.065097
|
1834 |
+
# 1 512.0 0.138271 0.201393 0.144467
|
1835 |
+
# 2 1024.0 0.391521 0.624614 0.322382
|
1836 |
+
# 3 2048.0 1.268443 2.406325 0.784367
|
1837 |
+
# 4 4096.0 4.455703 9.139097 2.100856
|
1838 |
+
# 5 8192.0 16.764315 35.289600 6.328320
|
1839 |
+
# 6 16384.0 65.221634 138.401794 21.069057
|
1840 |
+
# 7 32768.0 257.251343 548.085754 76.111870
|
1841 |
+
# fused-attention-batch4-head32-d128-sparse-local4-vert4-hetero-bwd:
|
1842 |
+
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
|
1843 |
+
# 0 256.0 0.297118 0.266469 0.255255
|
1844 |
+
# 1 512.0 0.672826 0.613685 0.552954
|
1845 |
+
# 2 1024.0 1.718434 1.705066 1.251953
|
1846 |
+
# 3 2048.0 4.936755 5.403875 2.927895
|
1847 |
+
# 4 4096.0 15.911594 18.959362 7.436288
|
1848 |
+
# 5 8192.0 55.357441 70.808578 21.140224
|
1849 |
+
# 6 16384.0 208.188416 273.617920 68.018173
|
1850 |
+
# 7 32768.0 806.037476 1081.453613 218.720261
|
1851 |
+
# fused-attention-inference-batch4-head32-d128-sparse-local4-vert4-hetero:
|
1852 |
+
# PAST_LEN Torch-Dense Flash-Dense Triton-Sparse
|
1853 |
+
# 0 256.0 0.050151 0.032337 0.107593
|
1854 |
+
# 1 512.0 0.073409 0.051737 0.200200
|
1855 |
+
# 2 1024.0 0.107533 0.082099 0.247067
|
1856 |
+
# 3 2048.0 0.177259 0.128891 0.338510
|
1857 |
+
# 4 4096.0 0.325866 0.223621 0.524842
|
1858 |
+
# 5 8192.0 0.586926 0.408913 0.885490
|
1859 |
+
# 6 16384.0 1.100834 0.793277 1.612271
|
1860 |
+
# 7 32768.0 2.098851 1.595831 3.064544
|
1861 |
+
|
1862 |
+
# fused-attention-batch4-head32-d128-sparse-local4-vert8-hetero-fwd:
|
1863 |
+
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
|
1864 |
+
# 0 256.0 0.066673 0.082037 0.065085
|
1865 |
+
# 1 512.0 0.137379 0.201880 0.143473
|
1866 |
+
# 2 1024.0 0.390675 0.624234 0.312046
|
1867 |
+
# 3 2048.0 1.267739 2.406950 0.696045
|
1868 |
+
# 4 4096.0 4.445138 9.136333 1.665788
|
1869 |
+
# 5 8192.0 16.768614 35.265533 4.380486
|
1870 |
+
# 6 16384.0 65.235970 138.393600 12.997633
|
1871 |
+
# 7 32768.0 257.317902 550.442993 42.821121
|
1872 |
+
# fused-attention-batch4-head32-d128-sparse-local4-vert8-hetero-bwd:
|
1873 |
+
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
|
1874 |
+
# 0 256.0 0.296461 0.266581 0.254022
|
1875 |
+
# 1 512.0 0.671427 0.613643 0.551283
|
1876 |
+
# 2 1024.0 1.719918 1.704295 1.229982
|
1877 |
+
# 3 2048.0 4.945305 5.403364 2.721906
|
1878 |
+
# 4 4096.0 15.934293 18.960999 6.259371
|
1879 |
+
# 5 8192.0 55.406593 70.832130 15.676929
|
1880 |
+
# 6 16384.0 208.750595 275.004425 44.837891
|
1881 |
+
# 7 32768.0 808.057861 1080.647705 141.856766
|
1882 |
+
# fused-attention-inference-batch4-head32-d128-sparse-local4-vert8-hetero:
|
1883 |
+
# PAST_LEN Torch-Dense Flash-Dense Triton-Sparse
|
1884 |
+
# 0 256.0 0.050739 0.032886 0.107837
|
1885 |
+
# 1 512.0 0.073507 0.051996 0.200293
|
1886 |
+
# 2 1024.0 0.106394 0.080679 0.240610
|
1887 |
+
# 3 2048.0 0.177659 0.127660 0.287625
|
1888 |
+
# 4 4096.0 0.326326 0.226971 0.377500
|
1889 |
+
# 5 8192.0 0.586339 0.407367 0.559266
|
1890 |
+
# 6 16384.0 1.102279 0.786221 0.920976
|
1891 |
+
# 7 32768.0 2.097370 1.545090 1.644288
|
1892 |
+
|
1893 |
+
|
1894 |
+
################
|
1895 |
+
##### fp16 #####
|
1896 |
+
################
|
1897 |
+
|
1898 |
+
# fused-attention-batch4-head16-d64-sparse-local4-vert8-hetero-fwd:
|
1899 |
+
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
|
1900 |
+
# 0 256.0 0.032518 0.035472 0.029939
|
1901 |
+
# 1 512.0 0.054266 0.087841 0.054320
|
1902 |
+
# 2 1024.0 0.133447 0.263090 0.102045
|
1903 |
+
# 3 2048.0 0.384615 1.023293 0.201763
|
1904 |
+
# 4 4096.0 1.300890 4.023936 0.449555
|
1905 |
+
# 5 8192.0 4.774144 15.816704 1.150854
|
1906 |
+
# 6 16384.0 18.220032 62.771198 3.356001
|
1907 |
+
# 7 32768.0 71.405571 250.273788 10.976142
|
1908 |
+
# fused-attention-batch4-head16-d64-sparse-local4-vert8-hetero-bwd:
|
1909 |
+
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
|
1910 |
+
# 0 256.0 0.083342 0.069742 0.079496
|
1911 |
+
# 1 512.0 0.159894 0.170995 0.151705
|
1912 |
+
# 2 1024.0 0.386071 0.522407 0.331443
|
1913 |
+
# 3 2048.0 1.067715 1.737333 0.715248
|
1914 |
+
# 4 4096.0 3.382731 6.219520 1.597457
|
1915 |
+
# 5 8192.0 11.857793 23.560448 3.879035
|
1916 |
+
# 6 16384.0 44.422142 91.251709 10.626843
|
1917 |
+
# 7 32768.0 175.011841 359.473145 32.340992
|
1918 |
+
|
1919 |
+
|
1920 |
+
################
|
1921 |
+
##### bf16 #####
|
1922 |
+
################
|
1923 |
+
|
1924 |
+
# fused-attention-batch4-head16-d64-sparse-local4-vert8-hetero-fwd:
|
1925 |
+
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
|
1926 |
+
# 0 256.0 0.037636 0.035902 0.031512
|
1927 |
+
# 1 512.0 0.058591 0.087229 0.058125
|
1928 |
+
# 2 1024.0 0.143337 0.263919 0.108443
|
1929 |
+
# 3 2048.0 0.414458 1.025985 0.214114
|
1930 |
+
# 4 4096.0 1.390841 4.020010 0.480550
|
1931 |
+
# 5 8192.0 5.067938 15.808171 1.230874
|
1932 |
+
# 6 16384.0 19.442280 62.765057 3.597274
|
1933 |
+
# 7 32768.0 75.501572 250.443771 11.768959
|
1934 |
+
# fused-attention-batch4-head16-d64-sparse-local4-vert8-hetero-bwd:
|
1935 |
+
# SEQ_LEN Triton-Dense Flash-Dense Triton-Sparse
|
1936 |
+
# 0 256.0 0.084404 0.070663 0.082613
|
1937 |
+
# 1 512.0 0.161510 0.172882 0.157661
|
1938 |
+
# 2 1024.0 0.388954 0.526047 0.339855
|
1939 |
+
# 3 2048.0 1.075814 1.736057 0.732420
|
1940 |
+
# 4 4096.0 3.401622 6.221376 1.636039
|
1941 |
+
# 5 8192.0 11.915136 23.483391 3.968725
|
1942 |
+
# 6 16384.0 44.660225 91.302910 10.857130
|
1943 |
+
# 7 32768.0 175.038467 359.048187 32.778240
|