|
# DaFucV2 AI - Dynamic AI Model |
|
|
|
This repository hosts the model for **DaFucV2 AI**, a dynamic AI architecture built using the **Fractal Universe Chocolate Wafer Model (FUCWM)**. The model is designed to integrate with the **DaFucV2 app**, offering interactive conversational capabilities and adaptive thinking loops. |
|
|
|
## Model Overview |
|
|
|
- **Model Architecture**: Combines a **Variational Autoencoder (VAE)** with fractal-like expanding layers based on complexity, using a **FractalNode** structure for dynamic growth. |
|
- **Self-Thinking and Feedback**: Incorporates an iterative feedback mechanism allowing the model to send its own thoughts back into itself for further refinement. |
|
- **Applications**: Optimized for conversational agents, adaptive feedback systems, and deeper multi-layered reasoning. |
|
- **Attention Mechanism**: The model dynamically adjusts attention across fractal layers to modulate responses based on the complexity of the input. |
|
|
|
## DaFucV2 App Integration |
|
|
|
The **DaFucV2 AI** model is designed to work seamlessly with the **DaFucV2 app**, available on [GitHub](https://github.com/anttiluode/DaFucV2/tree/main). You can use the app to interact with the model, send queries, and explore its capabilities in real time. |
|
|
|
### Demo Video |
|
|
|
Watch a video demonstration of me talking to the DaFucV2 AI [here on YouTube](https://www.youtube.com/watch?v=-PQ-rTkqwQ8). |
|
|
|
## Usage |
|
|
|
To load and use the model within the app: |
|
|
|
1. **Download the app** from the [DaFucV2 GitHub repository](https://github.com/anttiluode/DaFucV2/tree/main). |
|
2. **Place the model** (`model.pth`) in the appropriate directory. |
|
3. Run the app by following the instructions in the repository. |
|
|
|
To manually load the model in PyTorch: |
|
|
|
```python |
|
import torch |
|
from model import DynamicAI |
|
|
|
# Load the saved model |
|
model = DynamicAI(vocab_size=50000, embed_dim=256, latent_dim=256, output_dim=256, max_depth=7) |
|
model.load_state_dict(torch.load("model.pth")) |
|
|
|
# Set model to evaluation mode |
|
model.eval() |
|
|
|
# Example usage with input text |
|
input_text = "Hello, how are you?" |
|
response = model.chat(input_text) |
|
print(response) |
|
|