Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 0e2a206b6cbe63d9_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/0e2a206b6cbe63d9_train_data.json
  type:
    field_instruction: prompt
    field_output: chosen
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/90dbfeae-95d3-47a2-a988-98c5906bae01
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 3600
micro_batch_size: 4
mlflow_experiment_name: /tmp/0e2a206b6cbe63d9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
special_tokens:
  pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.03361547925588775
wandb_entity: null
wandb_mode: online
wandb_name: 65ecc54e-1ce1-46d0-8d8f-a58fd50f5f0f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 65ecc54e-1ce1-46d0-8d8f-a58fd50f5f0f
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

90dbfeae-95d3-47a2-a988-98c5906bae01

This model is a fine-tuned version of HuggingFaceH4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3113

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 3600

Training results

Training Loss Epoch Step Validation Loss
10.3673 0.0002 1 10.3688
10.3363 0.0223 100 10.3367
10.3308 0.0445 200 10.3281
10.324 0.0668 300 10.3221
10.3186 0.0890 400 10.3186
10.3196 0.1113 500 10.3180
10.3207 0.1336 600 10.3175
10.321 0.1558 700 10.3171
10.3129 0.1781 800 10.3167
10.3111 0.2004 900 10.3158
10.3192 0.2226 1000 10.3152
10.3219 0.2449 1100 10.3147
10.3197 0.2671 1200 10.3142
10.3143 0.2894 1300 10.3139
10.3172 0.3117 1400 10.3135
10.315 0.3339 1500 10.3132
10.3181 0.3562 1600 10.3128
10.3104 0.3785 1700 10.3125
10.3086 0.4007 1800 10.3123
10.3091 0.4230 1900 10.3121
10.3141 0.4452 2000 10.3119
10.314 0.4675 2100 10.3118
10.3158 0.4898 2200 10.3117
10.3147 0.5120 2300 10.3117
10.3192 0.5343 2400 10.3116
10.3062 0.5565 2500 10.3115
10.3046 0.5788 2600 10.3115
10.3184 0.6011 2700 10.3114
10.3104 0.6233 2800 10.3114
10.3105 0.6456 2900 10.3114
10.3174 0.6679 3000 10.3114
10.3149 0.6901 3100 10.3113
10.3201 0.7124 3200 10.3113
10.3111 0.7346 3300 10.3113
10.3115 0.7569 3400 10.3113
10.3168 0.7792 3500 10.3113
10.3123 0.8014 3600 10.3113

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Alphatao/90dbfeae-95d3-47a2-a988-98c5906bae01

Adapter
(274)
this model