See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 0e2a206b6cbe63d9_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0e2a206b6cbe63d9_train_data.json
type:
field_instruction: prompt
field_output: chosen
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/90dbfeae-95d3-47a2-a988-98c5906bae01
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 3600
micro_batch_size: 4
mlflow_experiment_name: /tmp/0e2a206b6cbe63d9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.03361547925588775
wandb_entity: null
wandb_mode: online
wandb_name: 65ecc54e-1ce1-46d0-8d8f-a58fd50f5f0f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 65ecc54e-1ce1-46d0-8d8f-a58fd50f5f0f
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
90dbfeae-95d3-47a2-a988-98c5906bae01
This model is a fine-tuned version of HuggingFaceH4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.3113
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 3600
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.3673 | 0.0002 | 1 | 10.3688 |
10.3363 | 0.0223 | 100 | 10.3367 |
10.3308 | 0.0445 | 200 | 10.3281 |
10.324 | 0.0668 | 300 | 10.3221 |
10.3186 | 0.0890 | 400 | 10.3186 |
10.3196 | 0.1113 | 500 | 10.3180 |
10.3207 | 0.1336 | 600 | 10.3175 |
10.321 | 0.1558 | 700 | 10.3171 |
10.3129 | 0.1781 | 800 | 10.3167 |
10.3111 | 0.2004 | 900 | 10.3158 |
10.3192 | 0.2226 | 1000 | 10.3152 |
10.3219 | 0.2449 | 1100 | 10.3147 |
10.3197 | 0.2671 | 1200 | 10.3142 |
10.3143 | 0.2894 | 1300 | 10.3139 |
10.3172 | 0.3117 | 1400 | 10.3135 |
10.315 | 0.3339 | 1500 | 10.3132 |
10.3181 | 0.3562 | 1600 | 10.3128 |
10.3104 | 0.3785 | 1700 | 10.3125 |
10.3086 | 0.4007 | 1800 | 10.3123 |
10.3091 | 0.4230 | 1900 | 10.3121 |
10.3141 | 0.4452 | 2000 | 10.3119 |
10.314 | 0.4675 | 2100 | 10.3118 |
10.3158 | 0.4898 | 2200 | 10.3117 |
10.3147 | 0.5120 | 2300 | 10.3117 |
10.3192 | 0.5343 | 2400 | 10.3116 |
10.3062 | 0.5565 | 2500 | 10.3115 |
10.3046 | 0.5788 | 2600 | 10.3115 |
10.3184 | 0.6011 | 2700 | 10.3114 |
10.3104 | 0.6233 | 2800 | 10.3114 |
10.3105 | 0.6456 | 2900 | 10.3114 |
10.3174 | 0.6679 | 3000 | 10.3114 |
10.3149 | 0.6901 | 3100 | 10.3113 |
10.3201 | 0.7124 | 3200 | 10.3113 |
10.3111 | 0.7346 | 3300 | 10.3113 |
10.3115 | 0.7569 | 3400 | 10.3113 |
10.3168 | 0.7792 | 3500 | 10.3113 |
10.3123 | 0.8014 | 3600 | 10.3113 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for Alphatao/90dbfeae-95d3-47a2-a988-98c5906bae01
Base model
HuggingFaceH4/tiny-random-LlamaForCausalLM