Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2-0.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - a23a73113e5bcd49_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/a23a73113e5bcd49_train_data.json
  type:
    field_instruction: title
    field_output: content
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/8783abb4-4863-4d35-96d0-38591b2d8490
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 5376
micro_batch_size: 4
mlflow_experiment_name: /tmp/a23a73113e5bcd49_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04787437763309077
wandb_entity: null
wandb_mode: online
wandb_name: 032a2798-2e45-4672-ba51-e28a8f853060
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 032a2798-2e45-4672-ba51-e28a8f853060
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

8783abb4-4863-4d35-96d0-38591b2d8490

This model is a fine-tuned version of Qwen/Qwen2-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7221

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 5376

Training results

Training Loss Epoch Step Validation Loss
2.7661 0.0003 1 2.7781
2.4133 0.0322 100 2.3111
2.3796 0.0644 200 2.2424
2.1234 0.0965 300 2.2007
2.2836 0.1287 400 2.1683
2.1882 0.1609 500 2.1389
2.1209 0.1931 600 2.1168
1.9807 0.2253 700 2.0961
2.0003 0.2574 800 2.0819
1.8976 0.2896 900 2.0609
2.2535 0.3218 1000 2.0465
2.0813 0.3540 1100 2.0284
2.0837 0.3862 1200 2.0134
1.8759 0.4183 1300 2.0016
2.0767 0.4505 1400 1.9873
2.0557 0.4827 1500 1.9745
1.708 0.5149 1600 1.9607
2.0113 0.5471 1700 1.9480
2.0235 0.5792 1800 1.9328
1.9351 0.6114 1900 1.9223
1.796 0.6436 2000 1.9164
1.8088 0.6758 2100 1.9011
1.6286 0.7080 2200 1.8900
1.9361 0.7401 2300 1.8786
1.636 0.7723 2400 1.8669
1.8454 0.8045 2500 1.8579
1.9547 0.8367 2600 1.8472
1.5638 0.8689 2700 1.8384
1.611 0.9010 2800 1.8275
1.7571 0.9332 2900 1.8143
1.9847 0.9654 3000 1.8063
1.9508 0.9976 3100 1.7982
1.3798 1.0298 3200 1.7971
1.5009 1.0619 3300 1.7864
1.5614 1.0941 3400 1.7795
1.7675 1.1263 3500 1.7721
1.2293 1.1585 3600 1.7665
1.7646 1.1907 3700 1.7610
1.4301 1.2228 3800 1.7582
1.2718 1.2550 3900 1.7507
1.6806 1.2872 4000 1.7457
1.5779 1.3194 4100 1.7413
1.3326 1.3516 4200 1.7374
1.6239 1.3837 4300 1.7350
1.713 1.4159 4400 1.7322
1.5364 1.4481 4500 1.7300
1.2966 1.4803 4600 1.7277
1.5881 1.5125 4700 1.7258
1.2867 1.5447 4800 1.7244
1.6141 1.5768 4900 1.7233
1.6782 1.6090 5000 1.7233
1.7381 1.6412 5100 1.7224
1.6309 1.6734 5200 1.7222
1.6214 1.7056 5300 1.7221

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Alphatao/8783abb4-4863-4d35-96d0-38591b2d8490

Base model

Qwen/Qwen2-0.5B
Adapter
(490)
this model