See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/mistral-7b-v0.3
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 22c390fa2fd3454c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/22c390fa2fd3454c_train_data.json
type:
field_input: Input
field_instruction: Instruction
field_output: Output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/6c34f98c-7e4f-4d22-befc-acd1929938e2
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 966
micro_batch_size: 4
mlflow_experiment_name: /tmp/22c390fa2fd3454c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 6eece874-15cc-4a69-9d22-190de373b23f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6eece874-15cc-4a69-9d22-190de373b23f
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
6c34f98c-7e4f-4d22-befc-acd1929938e2
This model is a fine-tuned version of unsloth/mistral-7b-v0.3 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3900
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 966
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.4524 | 0.0010 | 1 | 0.6885 |
4.1768 | 0.0983 | 100 | 0.5170 |
3.8307 | 0.1966 | 200 | 0.4812 |
3.6582 | 0.2948 | 300 | 0.4591 |
4.3532 | 0.3931 | 400 | 0.4399 |
3.6323 | 0.4914 | 500 | 0.4239 |
3.8378 | 0.5897 | 600 | 0.4111 |
2.7167 | 0.6880 | 700 | 0.4002 |
3.297 | 0.7862 | 800 | 0.3930 |
3.0928 | 0.8845 | 900 | 0.3900 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for Alphatao/6c34f98c-7e4f-4d22-befc-acd1929938e2
Base model
unsloth/mistral-7b-v0.3