bert-LoRA-reminder

This model is a fine-tuned version of dbmdz/bert-base-italian-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2139
  • Accuracy: 0.9545

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6677 1.0 22 0.6283 0.7955
0.6524 2.0 44 0.6168 0.8409
0.6299 3.0 66 0.6096 0.8182
0.6258 4.0 88 0.5980 0.8636
0.6206 5.0 110 0.5849 0.8409
0.5685 6.0 132 0.5694 0.8636
0.5896 7.0 154 0.5528 0.8864
0.5636 8.0 176 0.5361 0.8636
0.5681 9.0 198 0.5217 0.8864
0.5575 10.0 220 0.4968 0.8864
0.5097 11.0 242 0.4776 0.9091
0.5001 12.0 264 0.4541 0.9091
0.4712 13.0 286 0.4269 0.9318
0.4462 14.0 308 0.4016 0.9318
0.4255 15.0 330 0.3778 0.9545
0.3943 16.0 352 0.3566 0.9545
0.3889 17.0 374 0.3358 0.9545
0.3845 18.0 396 0.3169 0.9545
0.3397 19.0 418 0.2987 0.9545
0.3677 20.0 440 0.2862 0.9545
0.3271 21.0 462 0.2729 0.9545
0.3495 22.0 484 0.2607 0.9545
0.3057 23.0 506 0.2495 0.9545
0.2621 24.0 528 0.2399 0.9545
0.2911 25.0 550 0.2314 0.9545
0.2685 26.0 572 0.2253 0.9545
0.248 27.0 594 0.2200 0.9545
0.2421 28.0 616 0.2164 0.9545
0.2688 29.0 638 0.2147 0.9545
0.2723 30.0 660 0.2139 0.9545

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for AlexMason00/bert-LoRA-reminder

Adapter
(1)
this model