Alex MacLean
update model card README.md
1c239ce
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: sentence-compression-roberta
    results: []

sentence-compression-roberta

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3465
  • Accuracy: 0.8473
  • F1: 0.6835
  • Precision: 0.6835
  • Recall: 0.6835

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5312 1.0 50 0.5251 0.7591 0.0040 0.75 0.0020
0.4 2.0 100 0.4003 0.8200 0.5341 0.7113 0.4275
0.3355 3.0 150 0.3465 0.8473 0.6835 0.6835 0.6835

Framework versions

  • Transformers 4.12.5
  • Pytorch 1.10.0+cu113
  • Datasets 1.16.1
  • Tokenizers 0.10.3