swin-tiny-patch4-window7-224-finetuned-woody_LeftGR_130epochs

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3377
  • Accuracy: 0.9047

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 130

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6614 1.0 61 0.6404 0.6521
0.5982 2.0 122 0.5548 0.7107
0.579 3.0 183 0.5390 0.7141
0.5621 4.0 244 0.4920 0.7623
0.5567 5.0 305 0.5375 0.7313
0.5271 6.0 366 0.5542 0.7405
0.5312 7.0 427 0.4573 0.7876
0.5477 8.0 488 0.4540 0.7784
0.5554 9.0 549 0.4932 0.7635
0.5247 10.0 610 0.4407 0.7968
0.5239 11.0 671 0.4479 0.7842
0.5294 12.0 732 0.4509 0.7910
0.531 13.0 793 0.4419 0.7933
0.5493 14.0 854 0.4646 0.7784
0.4934 15.0 915 0.4310 0.7968
0.4965 16.0 976 0.4449 0.7876
0.4946 17.0 1037 0.4342 0.8129
0.4716 18.0 1098 0.4129 0.8140
0.4679 19.0 1159 0.4290 0.8002
0.4799 20.0 1220 0.4356 0.7842
0.4744 21.0 1281 0.4042 0.8094
0.4512 22.0 1342 0.3953 0.8117
0.4633 23.0 1403 0.4157 0.7956
0.4528 24.0 1464 0.3920 0.8094
0.4427 25.0 1525 0.3930 0.8220
0.4238 26.0 1586 0.3891 0.8140
0.4257 27.0 1647 0.3700 0.8255
0.4102 28.0 1708 0.4122 0.7968
0.4505 29.0 1769 0.4210 0.7945
0.3973 30.0 1830 0.3923 0.8197
0.3824 31.0 1891 0.3908 0.8473
0.3887 32.0 1952 0.3897 0.8312
0.3723 33.0 2013 0.3747 0.8381
0.3608 34.0 2074 0.3706 0.8301
0.3718 35.0 2135 0.3937 0.8255
0.3692 36.0 2196 0.3984 0.8037
0.3533 37.0 2257 0.3792 0.8335
0.3625 38.0 2318 0.4070 0.8163
0.3633 39.0 2379 0.4130 0.8232
0.3602 40.0 2440 0.3996 0.8186
0.3557 41.0 2501 0.3756 0.8335
0.3373 42.0 2562 0.3914 0.8220
0.3102 43.0 2623 0.4165 0.8507
0.3135 44.0 2684 0.3852 0.8278
0.3286 45.0 2745 0.4164 0.8450
0.316 46.0 2806 0.3498 0.8496
0.2802 47.0 2867 0.3887 0.8462
0.3184 48.0 2928 0.3829 0.8576
0.2785 49.0 2989 0.3627 0.8485
0.2988 50.0 3050 0.3679 0.8370
0.267 51.0 3111 0.3528 0.8645
0.2907 52.0 3172 0.3538 0.8519
0.2857 53.0 3233 0.3593 0.8530
0.2651 54.0 3294 0.3732 0.8439
0.2447 55.0 3355 0.3441 0.8542
0.2542 56.0 3416 0.3897 0.8576
0.2634 57.0 3477 0.4082 0.8657
0.2505 58.0 3538 0.3416 0.8657
0.2555 59.0 3599 0.3725 0.8576
0.2466 60.0 3660 0.3496 0.8680
0.2585 61.0 3721 0.3214 0.8783
0.235 62.0 3782 0.3584 0.8737
0.215 63.0 3843 0.3467 0.8657
0.236 64.0 3904 0.3471 0.8829
0.2211 65.0 3965 0.3318 0.8863
0.1989 66.0 4026 0.3645 0.8852
0.2133 67.0 4087 0.3456 0.8898
0.2169 68.0 4148 0.3287 0.8852
0.223 69.0 4209 0.3182 0.8921
0.2379 70.0 4270 0.3260 0.8840
0.2149 71.0 4331 0.3230 0.8886
0.2007 72.0 4392 0.3926 0.8760
0.2091 73.0 4453 0.4133 0.8783
0.2229 74.0 4514 0.3867 0.8772
0.1903 75.0 4575 0.3594 0.8840
0.2124 76.0 4636 0.3388 0.8875
0.1999 77.0 4697 0.3305 0.8875
0.2053 78.0 4758 0.4670 0.8840
0.1958 79.0 4819 0.3468 0.8909
0.1839 80.0 4880 0.3902 0.8886
0.1715 81.0 4941 0.3830 0.8875
0.1803 82.0 5002 0.3134 0.8967
0.1803 83.0 5063 0.3935 0.8909
0.1865 84.0 5124 0.3882 0.8863
0.1884 85.0 5185 0.3485 0.8990
0.1663 86.0 5246 0.3667 0.8944
0.1665 87.0 5307 0.3545 0.8932
0.1556 88.0 5368 0.3882 0.8944
0.18 89.0 5429 0.3751 0.8898
0.1974 90.0 5490 0.3979 0.8863
0.1622 91.0 5551 0.3623 0.8967
0.1657 92.0 5612 0.3855 0.8978
0.1672 93.0 5673 0.3722 0.8944
0.1807 94.0 5734 0.3994 0.8932
0.1419 95.0 5795 0.4017 0.8863
0.178 96.0 5856 0.4168 0.8886
0.1402 97.0 5917 0.3727 0.8944
0.1427 98.0 5978 0.3919 0.8967
0.1318 99.0 6039 0.3843 0.8955
0.1417 100.0 6100 0.4017 0.8898
0.1536 101.0 6161 0.3613 0.8955
0.1631 102.0 6222 0.3377 0.9047
0.1459 103.0 6283 0.3724 0.8967
0.1499 104.0 6344 0.3934 0.8955
0.1572 105.0 6405 0.3368 0.8967
0.1308 106.0 6466 0.3782 0.8990
0.1535 107.0 6527 0.3306 0.9024
0.125 108.0 6588 0.4076 0.8898
0.1339 109.0 6649 0.3628 0.8990
0.148 110.0 6710 0.3672 0.9013
0.1725 111.0 6771 0.4006 0.8909
0.1326 112.0 6832 0.4117 0.8921
0.1438 113.0 6893 0.3927 0.8978
0.1205 114.0 6954 0.3612 0.8990
0.1531 115.0 7015 0.3594 0.8932
0.1473 116.0 7076 0.4490 0.8875
0.1388 117.0 7137 0.3952 0.8921
0.136 118.0 7198 0.4098 0.8921
0.1579 119.0 7259 0.3595 0.9013
0.1359 120.0 7320 0.3970 0.8944
0.1314 121.0 7381 0.4092 0.8932
0.1337 122.0 7442 0.4192 0.8909
0.1538 123.0 7503 0.4154 0.8898
0.119 124.0 7564 0.4120 0.8909
0.1353 125.0 7625 0.4060 0.8921
0.1489 126.0 7686 0.4162 0.8909
0.1554 127.0 7747 0.4148 0.8944
0.1558 128.0 7808 0.4169 0.8944
0.1268 129.0 7869 0.4110 0.8955
0.1236 130.0 7930 0.4197 0.8944

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results