metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
model-index:
- name: Rice-Plant-50-Epochs-Model
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9688473520249221
- name: F1
type: f1
value: 0.9686087085518211
Rice-Plant-50-Epochs-Model
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1649
- Accuracy: 0.9688
- F1: 0.9686
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.0399 | 1.0 | 115 | 0.6185 | 0.8910 | 0.8933 |
0.3392 | 2.0 | 230 | 0.2849 | 0.9502 | 0.9497 |
0.1633 | 3.0 | 345 | 0.2230 | 0.9439 | 0.9440 |
0.104 | 4.0 | 460 | 0.2022 | 0.9502 | 0.9495 |
0.0828 | 5.0 | 575 | 0.2081 | 0.9408 | 0.9406 |
0.0603 | 6.0 | 690 | 0.2301 | 0.9408 | 0.9403 |
0.0513 | 7.0 | 805 | 0.1704 | 0.9595 | 0.9593 |
0.042 | 8.0 | 920 | 0.1587 | 0.9626 | 0.9626 |
0.0356 | 9.0 | 1035 | 0.1606 | 0.9626 | 0.9625 |
0.0299 | 10.0 | 1150 | 0.1608 | 0.9657 | 0.9656 |
0.0262 | 11.0 | 1265 | 0.1553 | 0.9626 | 0.9625 |
0.0232 | 12.0 | 1380 | 0.1582 | 0.9657 | 0.9656 |
0.0207 | 13.0 | 1495 | 0.1588 | 0.9657 | 0.9656 |
0.0186 | 14.0 | 1610 | 0.1618 | 0.9657 | 0.9656 |
0.0168 | 15.0 | 1725 | 0.1618 | 0.9657 | 0.9656 |
0.0152 | 16.0 | 1840 | 0.1639 | 0.9657 | 0.9656 |
0.0139 | 17.0 | 1955 | 0.1649 | 0.9688 | 0.9686 |
0.0127 | 18.0 | 2070 | 0.1676 | 0.9657 | 0.9656 |
0.0117 | 19.0 | 2185 | 0.1688 | 0.9688 | 0.9686 |
0.0108 | 20.0 | 2300 | 0.1710 | 0.9626 | 0.9622 |
0.01 | 21.0 | 2415 | 0.1723 | 0.9657 | 0.9654 |
0.0093 | 22.0 | 2530 | 0.1739 | 0.9657 | 0.9654 |
0.0087 | 23.0 | 2645 | 0.1758 | 0.9626 | 0.9622 |
0.0081 | 24.0 | 2760 | 0.1776 | 0.9626 | 0.9622 |
0.0076 | 25.0 | 2875 | 0.1777 | 0.9657 | 0.9654 |
0.0071 | 26.0 | 2990 | 0.1792 | 0.9657 | 0.9654 |
0.0067 | 27.0 | 3105 | 0.1808 | 0.9657 | 0.9654 |
0.0063 | 28.0 | 3220 | 0.1822 | 0.9657 | 0.9654 |
0.006 | 29.0 | 3335 | 0.1834 | 0.9657 | 0.9654 |
0.0057 | 30.0 | 3450 | 0.1840 | 0.9657 | 0.9654 |
0.0054 | 31.0 | 3565 | 0.1855 | 0.9657 | 0.9654 |
0.0051 | 32.0 | 3680 | 0.1868 | 0.9657 | 0.9654 |
0.0049 | 33.0 | 3795 | 0.1877 | 0.9657 | 0.9654 |
0.0047 | 34.0 | 3910 | 0.1892 | 0.9657 | 0.9654 |
0.0045 | 35.0 | 4025 | 0.1900 | 0.9657 | 0.9654 |
0.0043 | 36.0 | 4140 | 0.1914 | 0.9657 | 0.9654 |
0.0042 | 37.0 | 4255 | 0.1919 | 0.9657 | 0.9654 |
0.004 | 38.0 | 4370 | 0.1929 | 0.9657 | 0.9654 |
0.0039 | 39.0 | 4485 | 0.1938 | 0.9657 | 0.9654 |
0.0037 | 40.0 | 4600 | 0.1953 | 0.9657 | 0.9654 |
0.0036 | 41.0 | 4715 | 0.1956 | 0.9657 | 0.9654 |
0.0035 | 42.0 | 4830 | 0.1965 | 0.9657 | 0.9654 |
0.0035 | 43.0 | 4945 | 0.1974 | 0.9657 | 0.9654 |
0.0034 | 44.0 | 5060 | 0.1981 | 0.9657 | 0.9654 |
0.0033 | 45.0 | 5175 | 0.1984 | 0.9657 | 0.9654 |
0.0032 | 46.0 | 5290 | 0.1986 | 0.9657 | 0.9654 |
0.0032 | 47.0 | 5405 | 0.1989 | 0.9657 | 0.9654 |
0.0032 | 48.0 | 5520 | 0.1993 | 0.9657 | 0.9654 |
0.0031 | 49.0 | 5635 | 0.1993 | 0.9657 | 0.9654 |
0.0031 | 50.0 | 5750 | 0.1993 | 0.9657 | 0.9654 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1