Rice-Plant-Disease-Detection-Model

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2929
  • Accuracy: 0.8958
  • F1: 0.8965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.5517 1.0 18 0.5222 0.875 0.8754
0.2996 2.0 36 0.3833 0.8542 0.8564
0.1529 3.0 54 0.3152 0.875 0.8763
0.0843 4.0 72 0.2929 0.8958 0.8965
0.0549 5.0 90 0.2756 0.875 0.8754
0.0402 6.0 108 0.2765 0.875 0.8754
0.0327 7.0 126 0.2875 0.875 0.8754
0.0277 8.0 144 0.2938 0.875 0.8754
0.0244 9.0 162 0.2992 0.875 0.8754
0.0222 10.0 180 0.2996 0.8958 0.8960
0.0203 11.0 198 0.3052 0.8958 0.8960
0.019 12.0 216 0.3087 0.8958 0.8960
0.018 13.0 234 0.3143 0.8958 0.8960
0.0171 14.0 252 0.3206 0.8958 0.8960
0.0164 15.0 270 0.3227 0.8958 0.8960
0.0158 16.0 288 0.3250 0.8958 0.8960
0.0155 17.0 306 0.3257 0.8958 0.8960
0.0152 18.0 324 0.3264 0.8958 0.8960
0.015 19.0 342 0.3276 0.8958 0.8960
0.0149 20.0 360 0.3275 0.8958 0.8960

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cpu
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Akshay0706/Cinnamon-Plant-20-Epochs-Model

Finetuned
(1791)
this model

Evaluation results