Galician_xlsr / README.md
Akashpb13's picture
Update README.md
d9f2871
|
raw
history blame
3.68 kB
metadata
language:
  - gl
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - gl
  - robust-speech-event
  - model_for_talk
datasets:
  - mozilla-foundation/common_voice_8_0
model-index:
  - name: Akashpb13/Galician_xlsr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: kmr
        metrics:
          - name: Test WER
            type: wer
            value: 0.11308483789555426
          - name: Test CER
            type: cer
            value: 0.023982371794871796
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: gl
        metrics:
          - name: Test WER
            type: wer
            value: 0.11308483789555426
          - name: Test CER
            type: cer
            value: 0.023982371794871796

Akashpb13/Galician_xlsr

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - hu dataset. It achieves the following results on the evaluation set (which is 10 percent of train data set merged with invalidated data, reported, other, and dev datasets):

  • Loss: 0.137096
  • Wer: 0.196230

Model description

"facebook/wav2vec2-xls-r-300m" was finetuned.

Intended uses & limitations

More information needed

Training and evaluation data

Training data - Common voice Galician train.tsv, dev.tsv, invalidated.tsv, reported.tsv, and other.tsv Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0

Training procedure

For creating the training dataset, all possible datasets were appended and 90-10 split was used.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000096
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 13
  • gradient_accumulation_steps: 2
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Step Training Loss Validation Loss Wer
500 5.038100 3.035432 1.000000
1000 2.180000 0.406300 0.557964
1500 0.331700 0.153797 0.262394
2000 0.171600 0.145268 0.235627
2500 0.125900 0.136622 0.228087
3000 0.105400 0.131650 0.224128
3500 0.087600 0.141032 0.217531
4000 0.078300 0.143675 0.214515
4500 0.070000 0.144607 0.208106
5000 0.061500 0.135259 0.202828
5500 0.055600 0.130638 0.203959
6000 0.050500 0.137416 0.202451
6500 0.046600 0.140379 0.200000
7000 0.040800 0.140179 0.200377
7500 0.041000 0.138089 0.196795
8000 0.038400 0.136927 0.197172

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.0+cu102
  • Datasets 1.18.3
  • Tokenizers 0.10.3

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python eval.py --model_id Akashpb13/Galician_xlsr --dataset mozilla-foundation/common_voice_8_0 --config gl --split test