lilt-en-funsd
This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 1.6250
- Answer: {'precision': 0.8670520231213873, 'recall': 0.9179926560587516, 'f1': 0.89179548156956, 'number': 817}
- Header: {'precision': 0.6796116504854369, 'recall': 0.5882352941176471, 'f1': 0.6306306306306307, 'number': 119}
- Question: {'precision': 0.902867715078631, 'recall': 0.9062209842154132, 'f1': 0.9045412418906396, 'number': 1077}
- Overall Precision: 0.8765
- Overall Recall: 0.8922
- Overall F1: 0.8843
- Overall Accuracy: 0.8191
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
0.4102 | 10.53 | 200 | 0.9780 | {'precision': 0.794341675734494, 'recall': 0.8935128518971848, 'f1': 0.8410138248847926, 'number': 817} | {'precision': 0.6351351351351351, 'recall': 0.3949579831932773, 'f1': 0.48704663212435234, 'number': 119} | {'precision': 0.8618834080717489, 'recall': 0.8922934076137419, 'f1': 0.8768248175182481, 'number': 1077} | 0.8245 | 0.8634 | 0.8435 | 0.8098 |
0.0415 | 21.05 | 400 | 1.2998 | {'precision': 0.8573113207547169, 'recall': 0.8898408812729498, 'f1': 0.8732732732732732, 'number': 817} | {'precision': 0.5887850467289719, 'recall': 0.5294117647058824, 'f1': 0.5575221238938053, 'number': 119} | {'precision': 0.8603256212510711, 'recall': 0.9322191272051996, 'f1': 0.894830659536542, 'number': 1077} | 0.8454 | 0.8912 | 0.8677 | 0.8044 |
0.0138 | 31.58 | 600 | 1.4296 | {'precision': 0.8388952819332566, 'recall': 0.8922888616891065, 'f1': 0.8647686832740212, 'number': 817} | {'precision': 0.5185185185185185, 'recall': 0.7058823529411765, 'f1': 0.597864768683274, 'number': 119} | {'precision': 0.906158357771261, 'recall': 0.8607242339832869, 'f1': 0.8828571428571429, 'number': 1077} | 0.8471 | 0.8644 | 0.8557 | 0.8033 |
0.0071 | 42.11 | 800 | 1.5437 | {'precision': 0.8325991189427313, 'recall': 0.9253365973072215, 'f1': 0.8765217391304347, 'number': 817} | {'precision': 0.6593406593406593, 'recall': 0.5042016806722689, 'f1': 0.5714285714285715, 'number': 119} | {'precision': 0.8944392082940622, 'recall': 0.8811513463324049, 'f1': 0.8877455565949485, 'number': 1077} | 0.8568 | 0.8768 | 0.8667 | 0.8003 |
0.0035 | 52.63 | 1000 | 1.6306 | {'precision': 0.8327832783278328, 'recall': 0.9265605875152999, 'f1': 0.8771726535341833, 'number': 817} | {'precision': 0.6509433962264151, 'recall': 0.5798319327731093, 'f1': 0.6133333333333333, 'number': 119} | {'precision': 0.9034676663542643, 'recall': 0.8950789229340761, 'f1': 0.8992537313432836, 'number': 1077} | 0.8598 | 0.8892 | 0.8742 | 0.7967 |
0.0022 | 63.16 | 1200 | 1.6872 | {'precision': 0.8472063854047891, 'recall': 0.9094247246022031, 'f1': 0.8772136953955136, 'number': 817} | {'precision': 0.6363636363636364, 'recall': 0.5294117647058824, 'f1': 0.5779816513761468, 'number': 119} | {'precision': 0.9077212806026366, 'recall': 0.8950789229340761, 'f1': 0.9013557737260401, 'number': 1077} | 0.8685 | 0.8793 | 0.8739 | 0.7997 |
0.0021 | 73.68 | 1400 | 1.6366 | {'precision': 0.8106060606060606, 'recall': 0.9167686658506732, 'f1': 0.8604250430786904, 'number': 817} | {'precision': 0.5904761904761905, 'recall': 0.5210084033613446, 'f1': 0.5535714285714286, 'number': 119} | {'precision': 0.8941605839416058, 'recall': 0.9099350046425255, 'f1': 0.9019788311090657, 'number': 1077} | 0.8428 | 0.8897 | 0.8656 | 0.8054 |
0.0011 | 84.21 | 1600 | 1.5864 | {'precision': 0.8795180722891566, 'recall': 0.8935128518971848, 'f1': 0.8864602307225258, 'number': 817} | {'precision': 0.6481481481481481, 'recall': 0.5882352941176471, 'f1': 0.6167400881057269, 'number': 119} | {'precision': 0.8894783377541998, 'recall': 0.9340761374187558, 'f1': 0.911231884057971, 'number': 1077} | 0.8729 | 0.8972 | 0.8849 | 0.8194 |
0.0005 | 94.74 | 1800 | 1.5746 | {'precision': 0.8587699316628702, 'recall': 0.9228886168910648, 'f1': 0.8896755162241888, 'number': 817} | {'precision': 0.66, 'recall': 0.5546218487394958, 'f1': 0.6027397260273973, 'number': 119} | {'precision': 0.9055045871559633, 'recall': 0.9164345403899722, 'f1': 0.9109367789570835, 'number': 1077} | 0.8738 | 0.8977 | 0.8856 | 0.8254 |
0.0004 | 105.26 | 2000 | 1.6031 | {'precision': 0.8669778296382731, 'recall': 0.9094247246022031, 'f1': 0.8876941457586618, 'number': 817} | {'precision': 0.6173913043478261, 'recall': 0.5966386554621849, 'f1': 0.6068376068376068, 'number': 119} | {'precision': 0.904363974001857, 'recall': 0.904363974001857, 'f1': 0.904363974001857, 'number': 1077} | 0.8726 | 0.8882 | 0.8804 | 0.8218 |
0.0003 | 115.79 | 2200 | 1.6122 | {'precision': 0.8632183908045977, 'recall': 0.9192166462668299, 'f1': 0.890337877889745, 'number': 817} | {'precision': 0.6831683168316832, 'recall': 0.5798319327731093, 'f1': 0.6272727272727273, 'number': 119} | {'precision': 0.9016544117647058, 'recall': 0.9108635097493036, 'f1': 0.9062355658198614, 'number': 1077} | 0.8747 | 0.8947 | 0.8846 | 0.8221 |
0.0002 | 126.32 | 2400 | 1.6250 | {'precision': 0.8670520231213873, 'recall': 0.9179926560587516, 'f1': 0.89179548156956, 'number': 817} | {'precision': 0.6796116504854369, 'recall': 0.5882352941176471, 'f1': 0.6306306306306307, 'number': 119} | {'precision': 0.902867715078631, 'recall': 0.9062209842154132, 'f1': 0.9045412418906396, 'number': 1077} | 0.8765 | 0.8922 | 0.8843 | 0.8191 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.