Ahs2000's picture
End of training
54ea0c5 verified
|
raw
history blame
10.5 kB
metadata
library_name: transformers
license: other
base_model: nvidia/mit-b0
tags:
  - generated_from_trainer
datasets:
  - scene_parse_150
model-index:
  - name: segformer-b0-scene-parse-150
    results: []

segformer-b0-scene-parse-150

This model is a fine-tuned version of nvidia/mit-b0 on the scene_parse_150 dataset. It achieves the following results on the evaluation set:

  • Loss: 4.5313
  • Mean Iou: 0.0247
  • Mean Accuracy: 0.0606
  • Overall Accuracy: 0.2947
  • Per Category Iou: [0.06616146494205827, 0.3681700970509635, 0.0014878707677961685, 0.9162769876481256, 0.0, 0.5636441979126612, 0.0, 0.0, 0.0, 0.0, 0.002809019586327975, 0.0, nan, 0.0, 0.0, 0.0, 4.201327619527771e-05, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.005037440435670524, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan]
  • Per Category Accuracy: [0.29468704487548986, 0.49082289260924866, 0.156227501799856, 0.9651341594536313, 0.0, 0.9311171279131057, 0.0, nan, 0.0, 0.0, 0.002842817720970778, 0.0, nan, 0.0, nan, nan, 4.592949822023194e-05, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.008962454582155834, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
4.636 4.0 20 4.8633 0.0143 0.0490 0.2505 [0.06117991800032897, 0.2538067166642009, 0.0, 0.8617166061786316, 0.0, 0.5500544538802781, 0.0, 0.0, 0.0, 0.0, 0.002095025967295542, 0.0, 0.0, 0.0, 0.0, 0.0, 0.017959296883125888, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 4.291477126426916e-05, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan] [0.27402119451957613, 0.278794678434032, 0.0, 0.9355842408443006, 0.0, 0.7758986534277, 0.0, nan, 0.0, 0.0, 0.002109903777282999, 0.0, nan, 0.0, nan, nan, 0.03568722011712022, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 8.074283407347598e-05, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan]
4.3052 8.0 40 4.5313 0.0247 0.0606 0.2947 [0.06616146494205827, 0.3681700970509635, 0.0014878707677961685, 0.9162769876481256, 0.0, 0.5636441979126612, 0.0, 0.0, 0.0, 0.0, 0.002809019586327975, 0.0, nan, 0.0, 0.0, 0.0, 4.201327619527771e-05, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.005037440435670524, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan] [0.29468704487548986, 0.49082289260924866, 0.156227501799856, 0.9651341594536313, 0.0, 0.9311171279131057, 0.0, nan, 0.0, 0.0, 0.002842817720970778, 0.0, nan, 0.0, nan, nan, 4.592949822023194e-05, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.008962454582155834, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan]

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0