metadata
library_name: transformers
license: mit
base_model: sergeyzh/BERTA
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: berta_report_classifier
results: []
berta_report_classifier
This model is a fine-tuned version of sergeyzh/BERTA on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0030
- Accuracy: 1.0
- F1: 1.0
- Precision: 1.0
- Recall: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0286 | 1.0 | 70 | 0.0343 | 0.99 | 0.9900 | 0.9902 | 0.99 |
0.0351 | 2.0 | 140 | 0.0030 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0103 | 3.0 | 210 | 0.0077 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0011 | 4.0 | 280 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.4.1+cu124
- Datasets 2.14.6
- Tokenizers 0.20.3