metadata
license: mit
tags:
- generated_from_trainer
model-index:
- name: covid-tweets-sentiment-analysis-roberta-model
results: []
covid-tweets-sentiment-analysis-roberta-model
This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5581
- Rmse: 0.6098
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Rmse |
---|---|---|---|---|
0.7026 | 2.0 | 500 | 0.5581 | 0.6098 |
0.4029 | 4.0 | 1000 | 0.6095 | 0.5859 |
0.204 | 6.0 | 1500 | 0.8989 | 0.6307 |
0.1046 | 8.0 | 2000 | 1.1872 | 0.5906 |
0.058 | 10.0 | 2500 | 1.2907 | 0.5919 |
Framework versions
- Transformers 4.29.0
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3