|
--- |
|
language: |
|
- en |
|
--- |
|
# Adapting Multimodal Large Language Models to Domains via Post-Training |
|
|
|
This repository provides an implementation preview of our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930). |
|
|
|
Our code will be available at [https://github.com/bigai-ai/QA-Synthesizer](https://github.com/bigai-ai/QA-Synthesizer) |
|
|
|
|
|
We investigate domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation. |
|
**(1) Data Synthesis**: Using open-source models, we develop a visual instruction synthesizer that effectively generates diverse visual instruction tasks from domain-specific image-caption pairs. **Our synthetic tasks surpass those generated by manual rules, GPT-4, and GPT-4V in enhancing the domain-specific performance of MLLMs.** |
|
**(2) Training Pipeline**: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training. |
|
**(3) Task Evaluation**: We conduct experiments in two domains, biomedicine and food, by post-training MLLMs of different sources and scales (e.g., Qwen2-VL-2B, LLaVA-v1.6-8B, Llama-3.2-11B), and then evaluating MLLM performance on various domain-specific tasks. |
|
|
|
<p align='left'> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/-Jp7pAsCR2Tj4WwfwsbCo.png" width="600"> |
|
</p> |
|
|
|
|
|
<p align='left'> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/bRu85CWwP9129bSCRzos2.png" width="1000"> |
|
</p> |
|
|
|
|
|
***************** **Updates** ******************** |
|
- [2024/12/11] Released [food visual instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) for post-training MLLMs |
|
- [2024/12/10] Released evaluation benchmark datasets for biomedicine and food domains: [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark), [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark). |
|
- [2024/12/9] Released AdaMLLM developed from llava-next-llama3-8b: [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B), [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B). |
|
- [2024/12/7] Released [visual-instruction-synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) used to synthesize task triplets based on image-caption pairs. |
|
- [2024/12/6] Released AdaMLLM developed from Qwen2-VL-2B and Llama-3.2-11B-Vision: [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct), [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct), [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct), [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct), |
|
- [2024/12/05] Released [biomedicine visual instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) for post-training MLLMs |
|
- [2024/11/29] Released our paper |
|
|
|
|
|
## Resources |
|
**π€ We share our data and models with example usages, feel free to open any issues or discussions! π€** |
|
|
|
| Model | Repo ID in HF π€ | Domain | Base Model | Training Data | Evaluation Benchmark | |
|
|:----------------------------------------------------------------------------|:--------------------------------------------|:--------------|:-------------------------|:------------------------------------------------------------------------------------------------|-----------------------| |
|
| [Visual Instruction Synthesizer](https://huggingface.co/AdaptLLM/visual-instruction-synthesizer) | AdaptLLM/visual-instruction-synthesizer | - | open-llava-next-llama3-8b | VisionFLAN and ALLaVA | - | |
|
| [AdaMLLM-med-2B](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) | AdaptLLM/biomed-Qwen2-VL-2B-Instruct | Biomedicine | Qwen2-VL-2B-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) | |
|
| [AdaMLLM-food-2B](https://huggingface.co/AdaptLLM/food-Qwen2-VL-2B-Instruct) | AdaptLLM/food-Qwen2-VL-2B-Instruct | Food | Qwen2-VL-2B-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) | |
|
| [AdaMLLM-med-8B](https://huggingface.co/AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B) | AdaptLLM/biomed-LLaVA-NeXT-Llama3-8B | Biomedicine | open-llava-next-llama3-8b | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) | |
|
| [AdaMLLM-food-8B](https://huggingface.co/AdaptLLM/food-LLaVA-NeXT-Llama3-8B) |AdaptLLM/food-LLaVA-NeXT-Llama3-8B | Food | open-llava-next-llama3-8b | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) | |
|
| [AdaMLLM-med-11B](https://huggingface.co/AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/biomed-Llama-3.2-11B-Vision-Instruct | Biomedicine | Llama-3.2-11B-Vision-Instruct | [biomed-visual-instructions](https://huggingface.co/datasets/AdaptLLM/biomed-visual-instructions) | [biomed-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/biomed-VQA-benchmark) | |
|
| [AdaMLLM-food-11B](https://huggingface.co/AdaptLLM/food-Llama-3.2-11B-Vision-Instruct) | AdaptLLM/food-Llama-3.2-11B-Vision-Instruct | Food | Llama-3.2-11B-Vision-Instruct | [food-visual-instructions](https://huggingface.co/datasets/AdaptLLM/food-visual-instructions) | [food-VQA-benchmark](https://huggingface.co/datasets/AdaptLLM/food-VQA-benchmark) | |
|
|
|
|
|
## Contact |
|
Daixuan Cheng: `[email protected]` |
|
|
|
## About |
|
|
|
AdaMLLM represents our latest advancement in building domain-specific foundation models through post-training on synthetic supervised tasks derived from unsupervised contexts. |
|
|
|
<p align='left'> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/2aPl6mKIyHeQp8SO4TXAk.png" width="700"> |
|
</p> |
|
|
|
|
|
- **[AdaptLLM](https://huggingface.co/papers/2309.09530): Adapt LLM to domains** |
|
We employ rule-based methods to extract tasks from domain-specific corpora, reformatting them into reading comprehension tasks for continued pre-training. Our 7B finance model outperforms domain-specific models of much larger scales, such as BloombergGPT-50B. |
|
|
|
- **[AdaMLLM](https://huggingface.co/papers/2411.19930): Adapt Multimodal LLM to domains** |
|
We extend supervised task synthesis to multimodality, introducing a unified visual instruction synthesizer to extract instruction-response pairs from domain-specific image-caption pairs. Our synthetic tasks outperform those generated by manual rules, GPT-4, and GPT-4V in improving domain-specific performance for MLLMs. |
|
|
|
|
|
|
|
## Citation |
|
If you find our work helpful, please cite us. |
|
|
|
[AdaMLLM](https://huggingface.co/papers/2411.19930) |
|
```bibtex |
|
@article{adamllm, |
|
title={On Domain-Specific Post-Training for Multimodal Large Language Models}, |
|
author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang}, |
|
journal={arXiv preprint arXiv:2411.19930}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
[AdaptLLM](https://huggingface.co/papers/2309.09530) (ICLR 2024) |
|
```bibtex |
|
@inproceedings{ |
|
adaptllm, |
|
title={Adapting Large Language Models via Reading Comprehension}, |
|
author={Daixuan Cheng and Shaohan Huang and Furu Wei}, |
|
booktitle={The Twelfth International Conference on Learning Representations}, |
|
year={2024}, |
|
url={https://openreview.net/forum?id=y886UXPEZ0} |
|
} |
|
``` |