bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0589
- Precision: 0.9323
- Recall: 0.9495
- F1: 0.9408
- Accuracy: 0.9865
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0877 | 1.0 | 1756 | 0.0675 | 0.9109 | 0.9329 | 0.9218 | 0.9821 |
0.0323 | 2.0 | 3512 | 0.0623 | 0.9293 | 0.9487 | 0.9389 | 0.9857 |
0.0172 | 3.0 | 5268 | 0.0589 | 0.9323 | 0.9495 | 0.9408 | 0.9865 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train Abelll/bert-finetuned-ner
Evaluation results
- Precision on conll2003validation set self-reported0.932
- Recall on conll2003validation set self-reported0.950
- F1 on conll2003validation set self-reported0.941
- Accuracy on conll2003validation set self-reported0.987