license: cc-by-4.0
datasets:
- squad
- squad_v2
language:
- en
- hi
metrics:
- accuracy
pipeline_tag: question-answering
avishkaarak-ekta-hindi
This is the avishkaarak-ekta-hindi model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.
Overview
Language model: avishkaarak-ekta-hindi
Language: English, Hindi(Upcoming)
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Code: See an example QA pipeline on Haystack
Infrastructure: 4x Tesla v100
Hyperparameters
batch_size = 4
n_epochs = 50
base_LM_model = "roberta-base"
max_seq_len = 512
learning_rate = 9e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride=128
max_query_length=64
Usage
In Haystack
Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in Haystack:
reader = FARMReader(model_name_or_path="AVISHKAARAM/avishkaarak-ekta-hindi")
# or
reader = TransformersReader(model_name_or_path="AVISHKAARAM/avishkaarak-ekta-hindi",tokenizer="deepset/roberta-base-squad2")
For a complete example of AVISHKAARAM/avishkaarak-ekta-hindi
being used for Question Answering, check out the Tutorials in Haystack Documentation
In Transformers
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "AVISHKAARAM/avishkaarak-ekta-hindi"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
Performance
Evaluated on the SQuAD 2.0 dev set with the official eval script.
"exact": 79.87029394424324,
"f1": 82.91251169582613,
"total": 11873,
"HasAns_exact": 77.93522267206478,
"HasAns_f1": 84.02838248389763,
"HasAns_total": 5928,
"NoAns_exact": 81.79983179142137,
"NoAns_f1": 81.79983179142137,
"NoAns_total": 5945
Authors
Shashwat Bindal: optimus.coders.@ai
Sanoj: optimus.coders.@ai