SetFit with avsolatorio/GIST-small-Embedding-v0

This is a SetFit model that can be used for Text Classification. This SetFit model uses avsolatorio/GIST-small-Embedding-v0 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
objective
  • '"I have never seen it this bad," said Dan Domenech, executive director of the School Superintendents Association.'
  • 'There will be an enormous increase of public revenue, as there was after the war from the carry-over of the wartime taxes.'
  • 'No cases have been spotted so far of a strain that can evade tecovirimat, though the ruling class is warning of a “low barrier to resistance” which poses a risk that a resistant variant could emerge and spread.'
subjective
  • 'But what of American individualism?'
  • 'It’s a kind of brainwashing.'
  • 'In theory, the problematic behavior parts of the New Mexico ruling could still prevent an illegal alien from being given authorization to practice law, but don’t count on it.'

Evaluation

Metrics

Label Accuracy
all 0.9265

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("They are California, Florida, Illinois, Nebraska, New York, and Wyoming.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 22.7637 97
Label Training Sample Count
objective 256
subjective 256

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0002 1 0.2779 -
0.0122 50 0.2605 -
0.0243 100 0.2721 -
0.0365 150 0.2404 -
0.0486 200 0.2468 -
0.0608 250 0.1941 -
0.0730 300 0.0574 -
0.0851 350 0.0124 -
0.0973 400 0.0019 -
0.1094 450 0.0017 -
0.1216 500 0.0028 -
0.1338 550 0.0011 -
0.1459 600 0.0011 -
0.1581 650 0.0011 -
0.1702 700 0.0316 -
0.1824 750 0.0007 -
0.1946 800 0.001 -
0.2067 850 0.0009 -
0.2189 900 0.0008 -
0.2310 950 0.0007 -
0.2432 1000 0.0006 -
0.2554 1050 0.0006 -
0.2675 1100 0.0005 -
0.2797 1150 0.0005 -
0.2918 1200 0.0006 -
0.3040 1250 0.0006 -
0.3161 1300 0.0005 -
0.3283 1350 0.0005 -
0.3405 1400 0.001 -
0.3526 1450 0.0004 -
0.3648 1500 0.0005 -
0.3769 1550 0.0005 -
0.3891 1600 0.0004 -
0.4013 1650 0.0005 -
0.4134 1700 0.0004 -
0.4256 1750 0.0004 -
0.4377 1800 0.0004 -
0.4499 1850 0.0004 -
0.4621 1900 0.0003 -
0.4742 1950 0.0004 -
0.4864 2000 0.0004 -
0.4985 2050 0.0003 -
0.5107 2100 0.0003 -
0.5229 2150 0.0004 -
0.5350 2200 0.0004 -
0.5472 2250 0.0003 -
0.5593 2300 0.0003 -
0.5715 2350 0.0004 -
0.5837 2400 0.0004 -
0.5958 2450 0.0004 -
0.6080 2500 0.0003 -
0.6201 2550 0.0003 -
0.6323 2600 0.0003 -
0.6445 2650 0.0003 -
0.6566 2700 0.0003 -
0.6688 2750 0.0003 -
0.6809 2800 0.0003 -
0.6931 2850 0.0002 -
0.7053 2900 0.0003 -
0.7174 2950 0.0003 -
0.7296 3000 0.0003 -
0.7417 3050 0.0002 -
0.7539 3100 0.0003 -
0.7661 3150 0.0003 -
0.7782 3200 0.0003 -
0.7904 3250 0.0003 -
0.8025 3300 0.0003 -
0.8147 3350 0.0003 -
0.8268 3400 0.0003 -
0.8390 3450 0.0003 -
0.8512 3500 0.0003 -
0.8633 3550 0.0003 -
0.8755 3600 0.0003 -
0.8876 3650 0.0002 -
0.8998 3700 0.0003 -
0.9120 3750 0.0003 -
0.9241 3800 0.0002 -
0.9363 3850 0.0003 -
0.9484 3900 0.0003 -
0.9606 3950 0.0003 -
0.9728 4000 0.0003 -
0.9849 4050 0.0002 -
0.9971 4100 0.0003 -

Framework Versions

  • Python: 3.11.9
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.0
  • Transformers: 4.40.2
  • PyTorch: 2.1.2
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
18
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ANGKJ1995/GIST-small-Embedding-v0-checkthat-fitset-256

Finetuned
(5)
this model

Evaluation results