Model Card: Vietnamese_Embedding
Vietnamese_Embedding is an embedding model fine-tuned from the BGE-M3 model (https://huggingface.co/BAAI/bge-m3) to enhance retrieval capabilities for Vietnamese.
- The model was trained on approximately 300,000 triplets of queries, positive documents, and negative documents for Vietnamese.
- The model was trained with a maximum sequence length of 2048.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Dot product Similarity
- Language: Vietnamese
- Licence: cc-by-nc-4.0
Usage
from sentence_transformers import SentenceTransformer
import torch
model = SentenceTransformer("AITeamVN/Vietnamese_Embedding")
model.max_seq_length = 2048
sentences_1 = ["Trí tuệ nhân tạo là gì", "Lợi ích của giấc ngủ"]
sentences_2 = ["Trí tuệ nhân tạo là công nghệ giúp máy móc suy nghĩ và học hỏi như con người. Nó hoạt động bằng cách thu thập dữ liệu, nhận diện mẫu và đưa ra quyết định.",
"Giấc ngủ giúp cơ thể và não bộ nghỉ ngơi, hồi phục năng lượng và cải thiện trí nhớ. Ngủ đủ giấc giúp tinh thần tỉnh táo và làm việc hiệu quả hơn."]
query_embedding = model.encode(sentences_1)
doc_embeddings = model.encode(sentences_2)
similarity = query_embedding @ doc_embeddings.T
print(similarity)
'''
array([[0.66212064, 0.33066642],
[0.25866613, 0.5865289 ]], dtype=float32)
'''
Evaluation:
- Dataset: Entire training dataset of Legal Zalo 2021. Our model was not trained on this dataset.
Model | Accuracy@1 | Accuracy@3 | Accuracy@5 | Accuracy@10 | MRR@10 |
---|---|---|---|---|---|
Vietnamese_Reranker (Phase 2) | 0.7944 | 0.9324 | 0.9537 | 0.9740 | 0.8672 |
Vietnamese_Embedding (Phase 2) | 0.7262 | 0.8927 | 0.9268 | 0.9578 | 0.8149 |
Vietnamese_Embedding (public) | 0.7274 | 0.8992 | 0.9305 | 0.9568 | 0.8181 |
Vietnamese-bi-encoder (BKAI) | 0.7109 | 0.8680 | 0.9014 | 0.9299 | 0.7951 |
BGE-M3 | 0.5682 | 0.7728 | 0.8382 | 0.8921 | 0.6822 |
Vietnamese_Reranker (Phase 2) and Vietnamese_Embedding (Phase 2) was trained on 1100000 triplets.
Although the score on the legal domain drops a bit on Vietnamese_Embedding (Phase 2), since this phase data is much larger, it is very good for other domains.
You can reproduce the evaluation result by running code python evaluation_model.py (data downloaded from Kaggle).
Contact
If you want to use it for commercial purposes, please contact me via email.
Email:
Developer
Member: Nguyễn Nho Trung, Nguyễn Nhật Quang
Citation
@misc{Vietnamese_Embedding,
title={Vietnamese_Embedding: Embedding model in Vietnamese language.},
author={Nguyen Nho Trung, Nguyen Nhat Quang},
year={2025},
publisher={Huggingface},
}
- Downloads last month
- 16,836
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support