|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- AISE-TUDelft/Capybara |
|
tags: |
|
- code |
|
--- |
|
|
|
# BinT5 |
|
|
|
- **Repository: https://github.com/AISE-TUDelft/Capybara-BinT5** |
|
- **Paper: https://huggingface.co/papers/2301.01701** |
|
- **Point of Contact: https://huggingface.co/aalkaswan** |
|
- **Raw Data: https://zenodo.org/records/7229913** |
|
|
|
BinT5 is a Binary Code Summarization model, the base models are [CodeT5]() and fine-tuned with [Capybara](). |
|
|
|
We offer 5 variations of the model: |
|
|
|
| Name | Training Data | |
|
|-----------------------------------------------------|------------------------------------------------------| |
|
| [BinT5-C](https://huggingface.co/AISE-TUDelft/BinT5-C) | C Source | |
|
| [BinT5-Decom](https://huggingface.co/AISE-TUDelft/BinT5-Decom) | Decompiled C Binaries | |
|
| [BinT5-Stripped](https://huggingface.co/AISE-TUDelft/BinT5-Stripped) | Stripped Decompiled C Binaries | |
|
| [BinT5-Demi](https://huggingface.co/AISE-TUDelft/BinT5-Demi) | Demi-stripped Decompiled C Binaries | |
|
| [BinT5-NoFunName](https://huggingface.co/AISE-TUDelft/BinT5-NoFunName) | Decompiled C Binaries with the Function Name removed | |
|
|
|
### Citation Information |
|
|
|
``` |
|
@inproceedings{alkaswan2023extending, |
|
title={Extending Source Code Pre-Trained Language Models to Summarise Decompiled Binaries}, |
|
author={Al-Kaswan, Ali and Ahmed, Toufique and Izadi, Maliheh and Sawant, Anand Ashok and Devanbu, Premkumar and van Deursen, Arie}, |
|
booktitle={2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)}, |
|
pages={260--271}, |
|
year={2023}, |
|
organization={IEEE} |
|
} |
|
``` |