license: apache-2.0
language:
- ja
base_model:
- Qwen/Qwen2-7B
pipeline_tag: text-generation
library_name: transformers
Moriyasu_Qwen2_JP_7B
Model Description
Moriyasu_Qwen2_JP_7B is a is a large language model trained by Moriyasu. Based on Qwen/Qwen2-7B, it has been enhanced for Japanese usage through additional pre-training and instruction tuning.
Training Datasets
Pre-training dataset
The model is continually pre-trained on Japanese data from the Qwen2-7b model while maintaining the model's English ability (80% Japanese, 20% English). We use about 120 billion tokens sampled from, Japanese and English Wikipedia articles, Japanese CC-100 Japanese C4, Japanese OSCAR ,The Pile, Webfined, Japanese websites, book data, mathematics and code,...
Instruction Tuning
We generated about 1 million Instruction data from various methods such as generated data, translated data, and data manually tagged by humans.
Model Performance
JGLUE tasks
We used the lm-evaluation-harness repo to evaluate across 8 tasks, and the results are as follows:
Model | JCommonsenseQA | JNLI | JMARC | JSQuAD | JAQKET-V2 | XL-SUM | XWINOGRAD | MGSM | JA AVG |
---|---|---|---|---|---|---|---|---|---|
3-shot | 3-shot | 0-shot | 2-shot | 1-shot | 1-shot | 0-shot | 5-shot | ||
Acc. | Balanced Acc. | Balanced Acc. | Char-F1 | Char-F1 | ROUGE-2 | Acc. | Acc. | ||
Moriyasu_Qwen2_JP_7B (OURS) | 0.9491 | 0.9111 | 0.9550 | 0.8748 | 0.8924 | 0.1966 | 0.8238 | 0.5560 | 0.7699 |
Qwen2-7B-Instruct | 0.9080 | 0.7807 | 0.9329 | 0.9290 | 0.8334 | 0.1905 | 0.7216 | 0.6120 | 0.7385 |
SakanaAI/EvoLLM-JP-v1-7B | 0.8919 | 0.6602 | 0.9555 | 0.9210 | 0.8641 | 0.2331 | 0.8165 | 0.4760 | 0.7273 |
Llama-3-ELYZA-JP-8B | 0.9240 | 0.6485 | 0.9567 | 0.9204 | 0.8743 | 0.2135 | 0.7821 | 0.4920 | 0.7264 |
Llama-3-Swallow-8B-Instruct-v0.1 | 0.9249 | 0.6212 | 0.9427 | 0.9373 | 0.9083 | 0.1961 | 0.7404 | 0.5000 | 0.7214 |
Tanuki-8B-dpo-v1.0 | 0.7918 | 0.4305 | 0.9226 | 0.8229 | 0.7799 | 0.1168 | 0.7039 | 0.4360 | 0.6256 |
Japanese tasks
For this evaluation, we used swallow-evaluation repo to evaluate our model. The results of other models are taken from the report Llama-3.1-Swallow-8B-Instruct-v0.2 .
Model | JCom. | JEMHopQA | NIILC | JSQuAD | XL-Sum | MGSM | WMT20-en-ja | WMT20-ja-en | JMMLU | JHumanEval | Ja Avg |
---|---|---|---|---|---|---|---|---|---|---|---|
4-shot | 4-shot | 4-shot | 4-shot | 1-shot | 4-shot | 4-shot | 4-shot | 5-shot | 0-shot | ||
EM acc | Char-F1 | Char-F1 | Char-F1 | ROUGE-2 | EM acc | BLEU | BLEU | EM acc | pass@1 | ||
RakutenAI-7B-chat | 0.9035 | 0.2600 | 0.4619 | 0.8647 | 0.1339 | 0.2120 | 0.2667 | 0.1966 | 0.4504 | 0.2299 | 0.3980 |
Qwen2-7B-Instruct | 0.8856 | 0.3902 | 0.3859 | 0.8967 | 0.1277 | 0.5720 | 0.2041 | 0.1909 | 0.5713 | 0.5683 | 0.4793 |
Qwen2.5-7B-Instruct | 0.9151 | 0.4293 | 0.3910 | 0.8908 | 0.1676 | 0.6240 | 0.2108 | 0.1916 | 0.6252 | 0.5305 | 0.4976 |
Tanuki-8B-dpo-v1.0 | 0.2770 | 0.2937 | 0.3710 | 0.6669 | 0.1016 | 0.4280 | 0.2385 | 0.1820 | 0.3078 | 0.2555 | 0.3122 |
Llama 3 8B Instruct | 0.8785 | 0.3812 | 0.3936 | 0.8955 | 0.1273 | 0.4160 | 0.2143 | 0.2035 | 0.4719 | 0.2872 | 0.4269 |
Llama 3.1 8B Instruct | 0.8829 | 0.4272 | 0.4112 | 0.8856 | 0.1481 | 0.5280 | 0.2174 | 0.1990 | 0.5086 | 0.4976 | 0.4706 |
Llama 3 Youko 8B Instruct | 0.9196 | 0.4850 | 0.5178 | 0.9001 | 0.2085 | 0.4680 | 0.2559 | 0.1906 | 0.4691 | 0.2695 | 0.4684 |
Llama-3-ELYZA-JP-8B | 0.9017 | 0.5124 | 0.5016 | 0.9113 | 0.1677 | 0.4600 | 0.2509 | 0.1846 | 0.4829 | 0.3811 | 0.4754 |
Llama 3 heron brain 8B v0.3 | 0.9231 | 0.4933 | 0.5694 | 0.9056 | 0.2178 | 0.4560 | 0.2771 | 0.2168 | 0.4993 | 0.3177 | 0.4876 |
Llama 3 Swallow 8B Instruct | 0.9178 | 0.4963 | 0.5168 | 0.9088 | 0.1296 | 0.4880 | 0.2522 | 0.2254 | 0.4835 | 0.3927 | 0.4811 |
Llama 3.1 Swallow 8B Instruct v0.1 | 0.9240 | 0.5874 | 0.5736 | 0.9170 | 0.1380 | 0.5080 | 0.2820 | 0.2282 | 0.5301 | 0.3665 | 0.5055 |
Llama 3.1 Swallow 8B Instruct v0.2 | 0.9294 | 0.5601 | 0.5988 | 0.9148 | 0.1372 | 0.5280 | 0.2878 | 0.2270 | 0.5504 | 0.4079 | 0.5141 |
Moriyasu_Qwen2_JP_7B (OURS) | 0.9321 | 0.4823 | 0.6046 | 0.9201 | 0.1382 | 0.5560 | 0.2636 | 0.1892 | 0.5273 | 0.2976 | 0.4911 |
Japanese MTBench
For this evaluation, we use FastChat and gpt-4o-2024-08-06 for judgement and reference answer.
Due to limited computational resources, we conducted evaluations on only a select number of models.
Model | coding | extraction | humanities | math | reasoning | roleplay | stem | writing | JMTAvg |
---|---|---|---|---|---|---|---|---|---|
Moriyasu_Qwen2_JP_7B (OURS) | 5.15 | 7.10 | 8.45 | 6.85 | 5.85 | 8.15 | 7.10 | 7.65 | 7.04 |
Llama-3-ELYZA-JP-8B | 3.65 | 7.2 | 7.3 | 4.00 | 5.55 | 6.70 | 5.80 | 7.85 | 6.01 |
Llama 3.1 Swallow 8B Instruct v0.1 | 4.80 | 6.80 | 7.05 | 4.75 | 4.25 | 7.10 | 6.20 | 6.45 | 5.92 |
Elyza task 100:
For this benchmark, we use Elyza task 100 dataset and gpt4o scoring prompt of Elyza. Link prompt from this blog
Model | Score |
---|---|
Moriyasu_Qwen2_JP_7B (OURS) | 3.37 |
Llama-3-ELYZA-JP-8B | 3.66 |
Llama 3.1 Swallow 8B Instruct v0.1 | 3.32 |
Nejumi leaderboard 3
We will contact Nejumi soon to evaluate on this benchmark
Usage
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
path = 'AIJapanese/Moriyasu_Qwen2_JP_7B'
model = AutoModelForCausalLM.from_pretrained(
path,
torch_dtype=torch.bfloat16,
device_map="auto",
use_cache=True
)
tokenizer = AutoTokenizer.from_pretrained(path)
system_prompt = "あなたは誠実で優秀な日本人アシスタントです。常に可能な限り最も役立つ回答を提供するように努めてください。"
prompt = "日本で一番高い山は何ですか "
conversation = [{"role": "system", "content": system_prompt }]
conversation.append({"role": "user", "content": prompt})
text = tokenizer.apply_chat_template(
conversation,
tokenize=False,
add_generation_prompt=True)
model_inputs = tokenizer(text,return_tensors="pt").to(model.device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=2048,
temperature = 0.1,
#top_p=0.95,
#top_k=40,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)