MARTINI_enrich_BERTopic_r_turkeyjerky
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_r_turkeyjerky")
topic_model.get_topic_info()
Topic overview
- Number of topics: 5
- Number of training documents: 606
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | erdogan - ataturk - istanbul - aldım - merhaba | 41 | -1_erdogan_ataturk_istanbul_aldım |
0 | hissediyorum - bekliyorum - aklıma - sayısal - calısıyor | 280 | 0_hissediyorum_bekliyorum_aklıma_sayısal |
1 | erdogan - kılıcdaroglu - istanbul - imamoglu - hukumetin | 123 | 1_erdogan_kılıcdaroglu_istanbul_imamoglu |
2 | yaptım - postları - askına - shitpost - isterseniz | 97 | 2_yaptım_postları_askına_shitpost |
3 | turks - kadikoy - help - india - sorry | 65 | 3_turks_kadikoy_help_india |
Training hyperparameters
- calculate_probabilities: True
- language: None
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: None
- seed_topic_list: None
- top_n_words: 10
- verbose: False
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 1.26.4
- HDBSCAN: 0.8.40
- UMAP: 0.5.7
- Pandas: 2.2.3
- Scikit-Learn: 1.5.2
- Sentence-transformers: 3.3.1
- Transformers: 4.46.3
- Numba: 0.60.0
- Plotly: 5.24.1
- Python: 3.10.12
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support