MARTINI_enrich_BERTopic_publicannouncement602967921

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_publicannouncement602967921")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 7
  • Number of training documents: 838
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 vaccine - nhs - bbc - censorship - agenda 22 -1_vaccine_nhs_bbc_censorship
0 constables - allegations - warwickshire - informant - arrested 416 0_constables_allegations_warwickshire_informant
1 vaccinated - vaers - mhra - injections - myocarditis 160 1_vaccinated_vaers_mhra_injections
2 nhs - vaccinated - broadyorkshirelaw - autism - pupils 96 2_nhs_vaccinated_broadyorkshirelaw_autism
3 ukcitizen2021 - amendments - parliament - supranational - monkeypox 51 3_ukcitizen2021_amendments_parliament_supranational
4 bbcisthevirus - marches - antifa - banners - blff 48 4_bbcisthevirus_marches_antifa_banners
5 donotconsent - unite - parliament - unlawful - sworn 45 5_donotconsent_unite_parliament_unlawful

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.